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Abstract

The problem of detecting statistically signi�cant structure in time

series data can be solved by obtaining the partition of the observation

interval with the maximum posterior probability of a nonparametric

model of the data. We present a surprisingly simple algorithm for

obtaining the optimal partition for any data mode, including points,

binned points, and measurements at arbitrary times with a known

error distribution. The case where the model is a piecewise constant

Poisson process is demonstrated in two modes: a real-time or trigger

mode, and a retrospective mode. The same algorithm also yields

histograms, denoised signal shapes, spectral estimates, etc., and goes

some distance toward the ultimate goal of a time-domain analysis

procedure that optimally represents the underlying signal, suppressing

observational noise and the e�ects of sampling.
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1 Introduction: Bayesian Blocks

We present an improved version of Bayesian Blocks [Scargle 1998],

hereafter Paper V, a method of detecting and characterizing variabil-

ity { both random and deterministic [Scargle 1981] { in time series

data corrupted by observational errors. The approach underlying this

algorithm attempts to achieve the ideals for exploratory analysis listed

below. An underlying idea is that this approach and the algorithm

implementing it will be useful in the context of automated science data

analysis, and in turn be useful in astronomical data base analyses such

as those implemented by the Virtual Observatory.

Here is the general philosophy of the analysis:

� make few prior assumptions about the signal:

{ minimal smoothness assumptions

{ no shape assumptions

� handle large dynamic ranges in

{ amplitude

{ scale

� automatic

{ for scienti�c data mining applications

{ for objectivity

� eliminate noise

� simple to use, easy to compute

� impose no a priori limits on:
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{ scales

{ resolution

� detect local, rather than global, structure

� conserve information content

� not greedy1

� automatic penalty for model complexity

� run time � N 2 or less

� handle gaps and exposure variations

� allow two modes:

{ retrospective (model all data)

{ real-time - triggers on 1st signi�cant excursion

� output suitable for further analysis

� exactly reversible

� compress data volume

� allow incorporation of auxiliary, extrinsic data, such as variable

exposure, energy dependences, etc.

Some of these items were part of the original goal; many were unex-

pected bene�ts of the approach adopted. These issues will be discussed

individually in more detail below, when we are describing how the new

algorithm achieves these properties.
1A greedy algorithm is an iteration in which an optimum operation is carried out at each step, but because

such a local procedure may make mistakes that can't be corrected later, a global optimum is not guaranteed.
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This list suggests the use of the most generic possible nonparametric

data model, and has motivated our development of data segmentation

and Bayesian changepoint methods [ �O Ruanaidh and Fitzgerald 1996].

It is remarkable that a very simple idea { �tting of piecewise constant

models to the data { achieves essentially all of the above desiderata.

This approach yields a step-function, or segmented, representation of

the signal in which the range of the independent variable (e.g. time)

is automatically divided into unequal subintervals, in each of which

the dependent variable (e.g. intensity) is modeled as constant. Note

that density estimation, or the formation of histograms can be viewed

as essentially the same problem { as can cluster detection and, less

directly, classi�cation.

This representation is in the spirit of a nonparametric approxima-

tion, and not meant to imply that we believe the signal is really discon-

tinuous. The crude, blocky appearance of the discontinuous model may

be a liability in the context of visualization, but for our interests in de-

riving physically meaningful quantities we have not found it so. Blocky

models are useful in broad signal processing contexts [Donoho 1994],

and have several motivations. Their simplicity allows exact treatment

of the likelihood. We can marginalize the rate parameters exactly, giv-

ing convenient analytic formulas for the posterior. And we regard the

estimated model itself as less important than quantities derived from it.

For example, while smoothed plots of pulses within gamma-ray bursts

make pretty pictures, one is really interested in pulse locations, lags,

amplitudes, widths, rise and decay times, etc. These quantities can be

accurately determined directly from the locations, heights and widths

of the blocks.

One could consider piecewise linear models (cf ref Mannila et al).
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Our view is that such models may have a better visual appearance, but

all in all the improved 
exibility in �tting is largely o�set by the added

complexity of the model and its interpretation. Note further that if

continuity is imposed at the changepoints, a piecewise linear model

has essentially the same number of parameters, or degrees of freedom,

as does the simpler piecewise constant model.

The following section describes the new algorithm, and the rest of

the paper describes block analysis of time series and other data, with

examples. Below x2 describes how sequential data are presented for

input to the algorithm, x3 deals with the �tness, or cost, function

used in the analysis, and x4 gives examples of histograms, time series

analysis, and triggers.

2 Optimum Partition of an Interval

Our algorithm works on any sequential data. We introduce it in a

somewhat abstract setting because it can be used for other partitioning

problems beyond time series analysis. In a special case it implements

Bayesian blocks or other 1D segmentation ideas with any model �tness

function that satis�es a simple additivity condition. It improves on

previous approximate Bayesian block algorithms by achieving a rigor-

ous solution of the multiple changepoint problem, and is guaranteed

to �nd the global maximum, not just a local one. This approach may

be useful in higher dimensional data spaces, but there are sign�ciant

diÆculties even in 2D that have not yet been solved.
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2.1 Data Cells

Consider N data elements

xn; n = 1; 2; : : : ; N: (1)

each consisting of a set of numerical quantities or other attributes de�n-

ing the observed data. The meaning of the array xn is left vague be-

cause almost any of a wide variety of data types can be treated with

the current formalism. Simple examples are: points, counts of points in

bins, and measurements { correspondingly, the array x would contain

point coordinates; counts, bin sizes and locations; and measured values

and their uncertainties, respectively. The only requirement is that the

data be ordered (i.e., sequential), meaning that each xn is associated

with a time tn, such that the latter are ordered and contained in some

time interval I :

min(I) � t1 < t2 < : : : < tN � max(I) : (2)

In general tn speci�es the time of measurement, be it a point or an

interval. For point data (also called event data), tn is just the time

of event n. Although times are often represented as real numbers, the

�nite accuracy of measurement means that one is really specifying an

integer multiple of some small unit of time (typically on the order of

milliseconds to microseconds in high energy astrophysics). For cases

such as binned counts or measurements averaged over �nite time in-

tervals, the time interval must be speci�ed, either explicitly (as in an

array giving the lengths of a series of unequal time bins) or implicitly

(e.g. through speci�cation of bin size and time of the �rst bin).

It is convenient to represent sequential data with a data structure

consisting of a set of N data cells

Cn � fxn; tng ; (3)
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derived from the raw data. They form an ordered sequence with re-

spect to the independent variable t, can be grouped into blocks (x2.2)
forming partitions of I (x2.3), and contain whatever data quantities

are necessary to evaluate the �tness (x2.4) of an arbitrary partition.

In some cases two or more data elements are combined into a single

cell (see e.g. the discussion of duplicate time tags in x3.1), but for

the most part data cells correspond one-to-one with data elements. In

some cases (e.g. time-tagged event data) tn is contained in xn and

need not be separately speci�ed. Figure 1 is a cartoon of typical data

cells.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32(a)

1 2 3 4 5

block 1
6 7 8 9 10 11 12 13 14 15 16 17

block 2
18 19 20

block 3
21 22 23 24 25 26 27 28 29 30 31

block 4
32

block 5

(b)

Figure 1: Pictorial representation of data cells and the blocks made from them. The horizontal

axis represents the independent variable (often, but not necessarily time), with respect to which

the data are ordered. The sequential order depicted in Panel (a) is the only essential requirement

for data to be analyzable with our block algorithm. Panel (b) exempli�es the partition of the

set of data cells into blocks. The shaded cells are changepoints marking the beginnings of the

blocks.

2.2 Blocks of Cells

A block is a set of adjacent cells. Panel (b) of Figure 1 shows a sequence

of 32 data cells divided into �ve blocks. The following notation for
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blocks is useful:

B(n;m) � fCn; Cn+1; : : : Cmg ; (4)

that is m�n+1 cells in sequence. The case m = n represents a block

consisting of just one cell, as in the last block of the partition in Figure

1(b). An empty block has no meaning.

Why do we chunk the data into blocks? The cells in a block are

treated as a whole, in that they are described by a single statistical

model. Typically the same parametric model applies to all blocks, the

model parameters are constant within each block, and the values of

these parameters undergo jumps at the changepoints (x2.5) marking

the edges of the blocks. And �nally, the �tness of a block is of elemen-

tary importance, because the �tness of a partition (x2.4) is the sum of

the �tnesses of the blocks comprising it.

2.3 Partitions

A partition of the interval I is simply a set of nonoverlapping blocks

that together add up to the whole interval.2 A partition can be de-

�ned by specifying Nblocks, the number of blocks (the elements of the

partition), and the block edges, nk:

P(I) � fNblocks; nk; k = 1; 2; 3; : : : Nblocksg : (5)

There are one fewer changepoints than blocks, since by convention the

�rst block begins at the �rst data cell { n1 � 1 is implicit { and the

last block terminates with the last data cell. As described in x2.4 we

will seek the partition that maximizes a given function over all possible

partitions. How big is this search space if there are N cells? Establish
2Formally a partition of I is a set of blocks satisfying I =

S
k Bk and Bj

T
Bk = ; (the null set), for j 6= k.
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a 1-1 mapping between partitions and binary numbers of length N ,

by setting the k-th digit to 1 if cell k is a changepoint, 0 otherwise.

Remembering that the �rst cell is always a changepoint, the number

of partitions is then

Npartitions = 2N�1 (6)

Except for short time series this number is too large for an exhaustive

search, but our algorithm nevertheless �nds the optimum over this

space in a time that scales as only N 2.

2.4 Fitness of a Partition

Since our goal is to model data, we maximize3 a quantity measuring

the �tness of models in a speci�ed class. We take as this model class

all partitions of the interval, with a given statistical model for each

block of the partition. If the observational errors at di�erent times are

independent, as is often the case, �tness is additive over blocks:

F [P(I)] =
NblocksX
k=1

f(Bk) ; (7)

where F [P(I)] is the total �tness and f(Bk) is the �tness of block k.

Our algorithm depends explicitly on this additivity.

Speci�c examples and details of �tness functions are given below in

x3. What is important here is that we marginalize all parameters of the

block models except the times de�ning the beginning and end of the

block (Paper V). Then the total �tness depends on only P(I). The best

model is found by maximizing F over all partitions. As an example,

the �tness function we adopt for count data does not depend on the

Poisson rate parameters { they can be computed in an almost trivial

way, once the changepoints of the optimum partition are determined.
3Alternatively, one can minimize an error measure. Both are called optimization.
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2.5 Changepoints

We call the time separating two blocks a changepoint4. In principle

a changepoint could be anywhere in the interval, but we restrict them

to occur at the times corresponding to the data cells. The reasoning

is that moving a changepoint lying between two data cells to a new

location between the same cells does not sensibly change the model's

representation of the data. This simpli�cation reduces the search over

an in�nite space to a �nite optimization problem.

In some applications it might be useful to assign a data cell that is

a changepoint to be in both the subsequent and previous blocks, but

here we assign it to only one { with the convention that a changepoint

is the �rst cell in the subsequent block (rather than the last cell of the

previous block). Correspondingly, since the smallest partition consists

of a single block containing all data cells, the �rst data cell is always

a changepoint. If the last cell is a changepoint, it demarcates a block

consisting of that one cell, as in panel (b) of Figure 1, where the �ve

changepoints dividing the data cells into �ve blocks are shaded.

2.6 A Lemma on Subpartitions

We de�ne a subpartition of a given partition P(I) is a partition (of a

subset of I) consisting of a subset of the blocks of P(I). Although not

a necessary condition for the lemma to be true, in all cases of interest

here the blocks in the subpartition are contiguous, and thus form a

partition of a subinterval of I . Below we will make use of this simple

result on subpartitions of optimal partitions:
4In statistics, a changepoint in a time series is a point at which the statistical model undergoes an abrupt

transition, usually by one or more of its parameters jumping to a new value
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Lemma: A subpartition of an optimal partition

is an optimal partition of the subset it covers.

Let P0 be the subpartition and I 0 the subset of I that it covers. If there

were a partition of I 0, di�erent from and �tter than P0, then combining

it with the blocks of P not in P0 would, by the block additivity condition,

yield a partition of I �tter than P, contrary to the optimality of P.

Corollary: removing the last block of an optimal partition leaves an

optimal partition.

2.7 The Algorithm

We have assembled the de�nitions and results needed to state

our procedure and prove that it �nds a global optimum parti-

tion. This algorithm is in the spirit of dynamic programming

[Hubert, Arabie, and Meulman 2001]. It begins with the �rst data cell,

adding one more at each step until the whole interval has been treated.

This feature makes the algorithm suitable for real-time applications

(see x4.3).
The proof is by mathematical induction: if a theorem is true for R =

1, and one can show that, if it is true forR then it is true forR+1, then

the theorem holds for all R. At stepR the algorithm �nds the optimum

partition of the interval comprised of data cells IR � fC1; C2; : : : CRg.
To analyze all the data, take R = 1; 2; : : : N . The case R = 1 is trivial:

there is only one cell, and the only partition possible is the optimum

one.

Now suppose we have completed step R, having obtained the opti-
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mal partition Popt[IR], hereafter abbreviated P
opt(R), and are now at

step R + 1 and wish to �nd the optimal partition Popt(R+1). Assume

further that we have kept a running record of the �tness of the optimum

partition obtained at each previous step (call this array best) and the

location of the last changepoint in that partition (call this array last).

It is straightforward to compute

M(r) � f [B(r; R + 1)] (r = 1; 2; : : : R + 1) (8)

that is, the �tness of a putative last block starting at r and extending

to the end of the current interval. For example M(1) is the �tness of

the whole interval currently in play, namely the cells from 1 through

R + 1.

Using the block additivity of �tness, Eq. (7), the �tness of the

partition of IR+1 consisting of the optimum partition Popt[Ir�1] followed

by a single block B(r; R + 1) is:

A(r) = M(r) + f 0 r = 1
best(r � 1); r = 2; 3; : : : ; R + 1 ; (9)

Now comes the key reasoning step. While we don't yet know what

it is, the new optimum partition Popt(R+1) must exist and must have

a last changepoint, say r�.5 From its de�nition A(r�) is the �tness of

P
opt(R + 1). In particular, best(r� � 1) is the �tness of the optimal

subpartition consisting of all but the last block of Popt(R + 1), and

M(r�) is the �tness of said last block. Further, any partition with its

last changepoint at some other r 6= r� must have �tness not greater

than that of Popt(R + 1), so we have

A(r) � A(r�) for r 6= r� : (10)
5Any �nite combinatorial optimization problem has at least one solution. Also, all partitions have at least

one changepoint.
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In other words, the maximum of A(r) occurs at r�:

r� = argmax[A(r)] ; (11)

so �nding the �tness and last changepoint of Popt(R+1) is just a matter

of �nding the maximum of the array A and the index r at which this

maximum occurs.

At the end of the computation, it only remains to �nd the locations

of the optimal changepoints. The needed information is contained in

the array last(r) in which we have stored the index r� at each step.

Using the corollary of the subpartition lemma, it is a simple matter

to use the last value in this array to determine the last changepoint

in P opt(N), peel o� the end section of last corresponding to this last

block, and repeat. That is to say, the values

(1) cp1 = last(N)

(2) cp2 = last(cp1 � 1)

(3) cp3 = last(cp2 � 1)

: : :

are the index values giving the locations of the changepoints, in reverse

order. The positions of the changepoints are not necessarily �xed until

the very last iteration, although in practice it turns out that they

become more or less \frozen" once a few succeeding changepoints have

been detected.

The MatLab code for the algorithm in Appendix XX indicates how

all of these computations are implemented.
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3 Posteriors for Sequential Data

After a few general remarks about data, this section discusses the

speci�cs of determining the data cells appropriate to several data types,

and the computation of the corresponding posterior probability.

The algorithm works on a wide variety of data types. All that is

necessary is that the data be sequential with respect to some indepen-

dent variable, as outlined in x2.1, and one must know enough about the

observational errors to compute the posterior probability for the model

of a block of data. The data may be computationally determined, as

in a power spectrum derived from time series data, or even the output

of a computer simulation.

We consider measurements made to determine the magnitude of

some physical quantity, the dependent variable, as a function of some

other quantity, the independent variable. Typically the latter is con-

trolled in the measurement process (e.g. time, wavelength, or position)

and the dependent variable results from the physical process of interest,

(e.g. radiant intensity, or the density of some kind of discrete events {

see x3.1).
The set of possible values of the independent variable is called the

data space. For the one dimensional case to which this discussion is

con�ned, the data space is usually an interval, such as the time over

which observations have been made.

3.1 Point Data from Discrete Events

Sometimes the physical process, or perhaps the way of recording it,

takes the form a sequence of discrete events, each yielding a point in

the data space. In practice point coordinates are integer multiples of
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some small but �nite unit { and are thus discrete, not continuous.

The quantity of ultimate interest is the distribution function of the

points, interpretable as the intensity or probability density of some

physical variable { hence the term density estimation is sometimes

used in such cases. A key example is the case where the events are

the detection of individual photons, the corresponding points are the

measured detection times, and the quantity of interest is the radiation

intensity as a function of time.

For point data, it is natural to associate one cell with each event.

However, if the detector allows the separate detection of two (or more)

events that are simultaneous to within the accuracy with which times

are recorded, such pairs can be assigned to the same cell. As stated

earlier (x2.1), a set of data cells must contain everything necessary

to compute the �tness (x3) of the block containing the cells. One

requirement is the number of events in the block, so the �rst entry

in the cell data structure is the number of events assigned to the cell

(most often 1). Since another requirement is length of the block, the

second entry is the length of the interval associated with the event.

There is more than one way to de�ne an interval associated with a

given event in a sequence. Perhaps the most natural choice is the set of

times closer to that event than to any other. This de�nition yields

intervals de�ned by the midpoints between successive events: from pre-

ceding midpoint to the succeeding one. This choice is also motivated

by the ease of its generalization to higher dimensions (the Voronoi tes-

sellation of the data points, [Okabe, Boots, Sugihara and Chiu 2000,

Scargle 2001a, Scargle 2001c]), and its representation of the local point

density.

Alternatively, one can use the intervals between successive data
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points, roughly speaking assigning half of an event to the interval im-

mediately to its left and half to the one immediately to its right. This

choice may handle the onset of a steep gradient in the underlying den-

sity slightly better, and is also easily generatized to higher dimension as

the Delaunay triangulation [Okabe, Boots, Sugihara and Chiu 2000].

We allow a choice of these two modes in the code in the Appendix A.2.

Note that the quantities needed for computation of the �tness of a

block are simply the sums of the corresponding quantities over the cells

making up the block. This convenient result is a consequence of the

piece-wise constant Poisson model. For other models it might not hold,

but this would only make the computation of the cost function more

complex, and would not a�ect in any way the partitioning algorithm.

In e�ect, we are ignoring the actual values of the independent vari-

able, since only interval lengths and cell populations are needed. In

principle, the cells in a block need not even be contiguous. For exam-

ple, the cells near the very beginning and the very end of the interval

might belong to a constant background intensity level, and one would

therefore like to be able to interpret them as belonging to the same

block. An algorithm allowing wraparound would be a natural way to

deal with this case. For most purposes it is convenient to impose cell

contiguity on the blocks, and our algorithm has this condition built in.

For photon counting data (Paper V) used the posterior probability of

the constant-rate Poisson model, with the rate parameter marginalized,

to measure model �tness. As is typical for photon counting data modes,

this marginal for a block is a function of only N , the number of photon

counts in the block, and M , the length of the block:

fpoint(N;M) =
�(N + 1)�(M �N + 1)

�(M + 2)
(12)
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This is the quantity to be used in Eq. (8).

3.2 Binned Data

For binned data it makes sense to let the data cells correspond to the

bins. This section derives the �tness function for binned data, which

has a di�erent algebraic form than for point data. We generalize the

result in Paper V in two ways, allowing unequal bins and a variable

eÆciency factor.

The �rst entry in the cell data structure is the count of the number

of events with coordinates lying in the bins. If the bins are all equal,

the constant bin width is assumed, but for unequal bins the size of each

bin must be speci�ed, and is the second entry in the cell data structure,

namely Mn.

We can also generalize the analysis to include a variable eÆciency.

In astronomy, this factor is sometimes called exposure, since it arises

when the time a telescope spends collecting photons varies across the

sky; in addition, instrumental sensitivity may vary with time. We

assume that whatever the e�ect is, it can be represented by specifying

an eÆciency factor, 0 < En � 1, for each bin, such that the e�ective

Poisson event rate for the data collected in bin n is

�e� = �En ; (13)

where � is the true, observed or modeled, event rate.

The likelihood for bin n is

Ln =
(�EnWn)

Nne��EnWn

Nn!
(14)

where here � is the true Poisson parameter (events per unit time)

speci�ed by the model for the block containing the bin, and Wn is the



3 POSTERIORS FOR SEQUENTIAL DATA 20

width of the bin (in the same units). The likelihood for block k is

Lk =
MkY
n=1

Ln = �Nke��
P
nEnWn

Y
n

[(EnWn)]
Nn : (15)

Here the product and the sum are over all bins in the block, M is the

number of bins in the block, and

Nk =
MkX
n=1

Nn (16)

is the total event count from the data in block k, and we have thrown

away the denominator in Eq. (14) { for the usual reason that this factor

is the same for all models, and is thus irrelevant for model comparison.

As in Paper V, we marginalize over the Poisson rate, but now use the

following more general form for the prior distribution of �:

P (�) = P0 �
��1e��� (17)

where

P0 =
��

�(�)
(18)

is the normalization constant. Gelman et. al (1995) argue for the

appropriateness of this prior for Poisson data, noting that it is conjugate

to the Poisson likelihood, and also has the interpretation that this

\prior density is, in some sense, equivalent to a total count of �-1 in �

prior observations."

Using this prior, the marginalized posterior probability of the Pois-

son model Mk for block k, given the dataDk = fNn; n = 1; 2; : : :Mkg,
is

P (MkjDk) = P0

Y
n

(EnWn)
Nn

Z
1

0
�Nk+��1e��(

P
nEnWn+�)d� : (19)
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Carrying out the integral, we have

P (MkjDk) = P0

�(Nk + �)
Q
n(EnWn)

Nn

(
P
nEnWn + �)Nk+�

(20)

Note that the prior in equation (28) of Paper V, corresponds to � = 1

and � = 1, and the equation above reduces to equation (29) of that

paper for equally spaced bins.

Application of the algorithm described in x2.7 merely requires the

straightforward computation of Eq. (20) using the known values of En

and Wn. Examples will be given in x4 below.

3.3 Measurements: Point and Distributed

The data can also consist of measurements of a quantity at a set of

points. For example, the data array could be

x = fxn; tn; �ng n = 1; 2; : : : ; N ; (21)

where xn is the value measured at time tn, and �n is some measure

of the corresponding observational uncertainty. The measurement is

never strictly at a point, but distributed over an interval. If warranted,

the variation of the instrumental sensitivity over the interval must also

be speci�ed { in terms of a window function.

We assume the standard piece-wise constant model of the underlying

signal, that is, a set of contiguous blocks:

B(x) =
NbX
j=1

B(j)(x) (22)

where each block is represented as a boxcar function:

B(k)(x) = f Bj �j � x � �j+1
0 otherwise

(23)
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the �j are the changepoints, satisfying

min(xn) � �1 � �2 � : : : �j � �j+1 � : : : � �Nb
� max(xn) (24)

and the Bj are the heights of the blocks.

The value of the observed quantity, yn, at xn, under this model is

ŷn =
R
wn(x)B(x)dx

=
R
wn(x)

PNb
j=1B

(j)(x)dx

=
PNb
j=1

R
wn(x)B

(j)(x)dx

=
PNb
j=1Bj

R �j+1
�j

wn(x)dx

(25)

so we can write

ŷn =
NbX
j=1

BjGj(n) (26)

where

Gj(n) �
Z
�j+1

�j
wn(x)dx (27)

is the inner product of the n-th weight function with the support of

the j-th block. The analysis in [?] showns how do deal with the non-

orthogonality that is generally the case here.6

3.4 The Posterior

The averaging process in this data model induces dependence among

the blocks. The likelihood, written as a product of likelihoods of the

assumed independent data samples, is

P (DatajModel) =
QN
n=1 P (ynjModel) (28)

=
QN
n=1

1p
2��2n

e�
1
2(

yn�ŷn
�n

)2 (29)

6If the weighting functions are delta functions, it is easy to see that Gj(n) is non-zero if and only if xn lies in
block j, and since the blocks do not overlap the product Gj(n)Gk(n) is zero for j 6= k, yielding orthogonality,P

N Gj(n)Gk(n) = Æj;k. And of course there can be some orthogonal blocks, for which there happens to be
no\spill over", but these are exceptions.
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=
QN
n=1

1p
2��2n

e�
1
2(

yn�
PNb
j=1BjGj (n)

�n
)2 (30)

= Qe�
1
2(

yn�
PNb
j=1BjGj(n)

�n
)2 ; (31)

where

Q �
NY
n=1

1q
2��2

n

: (32)

After more algebra and adopting a new notation, symbolized by
yn

�2
n

! yn (33)

and
Gk(n)

�2
n

! Gk(n) ; (34)

we arrive at

logP (fyngjB) = Qe�
H
2 ; (35)

where

H �
NX
n=1

y2
n
� 2

NbX
j=1

Bj

NX
n=1

ynGj(n) +
NbX
j=1

NbX
k=1

BjBk

NX
n=1

Gj(n)Gk(n) :

(36)

The last two equations are equivalent to Eqs. (3.2) and (3.3) of [?], so

that the orthogonalization of the basis functions and the �nal expres-

sions follow exactly as in that reference.

Often the measurement is made over a range of values of t, not just

at a point. An good example is the spatial power spectra computed

from measurements of the cosmic microwave background radiation,

where the di�erent experiments have widely di�erent window functions

(the term used to describe sensitivity as a function of the independent

variable { i.e., spatial harmonic number). In this case we have

x = fx(tn); tn; wn(t� tn)g n = 1; 2; : : : ; N ; (37)
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where w gives the shape of the window function. This is a nontrivial

complication if the window functions overlap, but can nevertheless be

handled with the same technique.

3.5 Gaps and Mixed Data Modes

In some cases there are subintervals over which no events are possible

(e.g. gaps due to failures in the detector system). What matters is

the \live time" during the block, and this is simply the sum of the cell

lengths. Thus data gaps can be handled by ignoring them! The only

subtlety lies in interpreting what the model implies if a block extends

across a gap. For each block the procedure yields the optimum rate

parameter for whatever data lies in the block, ignoring any gaps. At

the end of the procedure, for display purposes the gaps can be restored

and plotted, preferably with some indication that rates within gaps are

more uncertain.

Only if the �tness function depends on the total length of the block,

and not just the live time, do the lengths of the overlap between the

block and these gaps need to be included. The only example of this

we have encountered results from the adoption of a prior distribution

of block width.

Furthermore, one can even mix data modes. E.g., bins of arbitrary

sizes can be combined with point data. As with gaps the only burden

for doing this is placed on the �tness function, which in this case would

have to include a provision for data of mixed modes falling within

the block. An example of this would be the analysis of both binned

and time-tagged event (TTE) data for gamma-ray bursts observed by

BATSE.
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3.6 Prior for Number of Blocks

In our earlier work (Paper V) no explicit prior probability was assigned

to Nblocks, the number of blocks (or equivalently the number of change-

points). This omission amounts to using a 
at prior, but in many

contexts it is unreasonable to assign the same prior probability to all

values. In particular, in most settings Nblocks � N is a priori much

more unlikely than is a small number of blocks.

For this reason it is desirable to impose a prior that assigns smaller

probability to a large number of changepoints. Using a geometric prior

for this parameter [Coram 2002] amounts to the prior

P (Nblocks) = P0

�Nblocks : (38)

This is not the only prior possible, but it is very convenient to imple-

ment, since with the �tness equal to the log of the posterior, one only

needs to subtract the constant log 
 from the �tness of each block.

Figure 2 is the result of a simulation study using BATSE TTE data.

The block decomposition of the full set of photons was taken as the

(relative) truth and compared with decompositions based on a random

subsample of the events. The RMS di�erence was taken as the measure

of error, as a function of log 
 (the abscissa in the �gure). This pro-

cedure is analogous to standard crossvalidation methods. The e�ect7

of log 
 in this and other simulations seems to level o� at around 6.

We have adopted the value 8 in the examples shown here. We recom-

mend that persons using the algorithm carry out simulations of this

kind to study the behavior of the algorithm as a function of 
 for their

application.
7A large value of this parameter naturally has the e�ect of reducing the number of blocks, producing a block

representation that has less structure { giving a smoother visual appearance. But the parameter is not explicitly
a smoothing parameter.
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Figure 2: Simulation study for the parameter 
. The dashed curve with circles is for the �rst

110 busrts in the TTE sample, and the solid green curve with squares is for the complete sample

of 1320 bursts, with DISCSC data.

4 Examples

This section presents results using the algorithms given in the Appendix

on various sample data sets.

4.1 TTE Time Series

This algorithm was originally developed with the BATSE TTE data

in mind. Paper V used the greedy approach, which not only is not

guaranteed to achieve the global optimum, but the iterative process

that implements the greedy optimization requires a stopping criterion

based on the adoption of a threshold. Even though it is possible to

choose well-justi�ed values for the threshold, this nevertheless repre-
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sents an undesirable ambiguity. It is one of the nice features of the

current algorithm that there is no such threshold.

Figure 3 shows the optimal block decompositions of data for a 
-ray
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Figure 3: Optimal partitions of BATSE TTE data for Trigger 0551. All photons were used in

the top panel; the others are based on the smaller number of photons detected in each of the

four BATSE energy channels.

burst based on the point data comprising the TTE data for BATSE

trigger 0551 (reference). The value log(
) = 8 was used for the param-

eter in the prior. This analysis is based on the �rst 14; 000 photon time
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tags for this burst. The full data set consists of 28; 904 photons, but

the last half is essentially background. Since the data are time tagged

events, we used the form of the posterior given in Equation (12).

Figure 4 shows the TTE data summed over all four energy channels,
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Figure 4: Optimal partitions of BATSE TTE data for Trigger 0551. Same as the �rst panel of

Figure 3, except that four di�erent values of log 
 were used: 0, 2, 4 and 8

analyzed with four di�erent values of the prior parameter log 
. The

�rst panel corresponds to a 
at prior, giving too much prior probability

to large numbers of changepoints. The obvious symptom is the appear-

ance of many short spikes, corresponding to narrow intervals in which

a statistical 
uctuation is elevated by the inappropriate prior into ap-
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parent signi�cance. While they represent putative features that are

probably not real, and are cosmetically obnoxious, these spikes would

not a�ect any parameters derived essentially from the area under the

curve.

The second panel, with a prior that gives lower weight to large

numbers of changepoints has fewer spikes. By the time one reaches

log 
 = 4, there is little change in the representation (cf. Figure 6).

This result is not necessarily universal, but the �gures shown here in-

dicate that the value log 
 = 8 is quite reasonable and that values

somewhat lower or higher would not make any real di�erence in the

�nal representation.

4.2 Binned Time Series

Figure 5 shows the block representation for a portion of the light curve

of the �rst burst in the BATSE catalog, observed on April 21, 1991,

Trigger 0105. These data are available at

ftp://cossc.gsfc.nasa.gov/compton/data/batse/ascii_data/64ms/trig00000/cat64ms.00105

in binned 8 format, with larger bins at the beginning, transitioning to

smaller bins at the �ducial trigger time.

The three panels in the �gure are for di�erent values of the prior

parameter log 
 . The �rst case, log 
 = 0, corresponds to a 
at prior.

With this rather strong encouragement for a large number of blocks,

it is seen that the block representation is identical to the raw binned

data. Even the coarse pre-trigger bins that seem to be combined into
8BATSE continuously recorded data in time bins 1:024 seconds long, and the time series posted on the web

has 116 seconds of such low-resolution data pre-pended to the 16� higher (64 millisecond bins) resolution data
starting at the �ducial trigger time. To make the bins equal, the numbers given on the web site apportion the
counts in each large bin into 16 small bins. Since our analysis can handle unequal bins, we have undone this,
and reconstructed the actual integer counts in the larger bins.
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large blocks because their event rates are so similar, are represented as

separate blocks.

The second panel, log 
 = 8, corresponds to the best choice for the

parameter, and can here be taken as the best block representation of

these data. The last panel, log 
 = 16, corresponds to too much of

a penalty against a large number of blocks. One notes that the most

intense peak, which is resolved into two peaks in the other panels, is

here a single peak.
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Figure 5: Optimal partitions of BATSE TTE data for Trigger 0105.

Finally, for comparison in Figure 6, we show analyses of the same



4 EXAMPLES 31

data, unbinned and binned, for Trigger 0551. This �gure was created
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Figure 6: BATSE Trigger 0551. Top: TTE data. Bottom: same data, binned into 256 bins.

with the MatLab code included in the Appendix and available elec-

tronically. Note that the results are nearly identical, except for details

of the �rst pulse.
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4.3 Real Time Analysis

4.3.1 Triggers

4.3.2 Running Block Analysis

4.4 Histograms
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5 Appendix A: MatLab Code

This section contains MatLab9 code for the analysis tools. The func-

tion fit evaluates the natural logarithm of the �tness function, and

reverse reverses the order of an array. The quantity eps is the small-

est number representable on the current machine. All other constructs

and functions are standard MatLab.

5.1 Main Program

These code listings can be used to recreate Figure 6.

% test_global.m

%--------------------------------------------

% Run two test cases: (1) TTE data

% (2) binned data

%--------------------------------------------

first = 0; % Retrospective (not real-time) mode

tick2sec = .000002;

%---------------------------------

% Load BATSE TTE Data

%---------------------------------

file_name = 'tteascii.00551';

tt = load_new_ttedata( file_name );

min_tt = min( tt );

max_tt = max( tt );

num_bins = 256;

bins = linspace( min_tt, max_tt, num_bins );

dt_bins = bins(2) - bins(1); % bin width

xx = hist( tt, bins );

%------------------------------------------------

% Global Optimization of TTE Data

%------------------------------------------------

max_delt = 1; % Max separation of time tags

9 c
 the Mathworks, Inc.
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type = 1;

data_cells = make_data_cells( tt', type, max_delt );

prior = 8;

cpu_1_tte = cputime;

cpv_tte = global_optimum( data_cells, type, prior, first );

cpu_2_tte = cputime;

subplot(2,1,1)

% plot binned data for reference

plot( tick2sec * bins, xx/dt_bins, '-g') hold on

[ ii_pulses, count_vec ] = plot_tte( tt, tt( cpv_tte ) );

v = axis;

v(1) = tick2sec*min_tt;

v(2) = tick2sec*max_tt;

axis(v)

fprintf(1,'Done with TTE data; %4.2f cpu minutes.\n', (cpu_2_tte - cpu_1_tte)/60 )

%----------------------------------------------

% block analysis of same data, but binned

% cell_sizes is array of bin widths

% (here, all the same, but unequal in general)

%----------------------------------------------

cell_sizes = ( bins(2) - bins(1) ) * ones( size( xx ) );

data_cells = [ cell_sizes; xx; ]';

type = 2; % binned data

cpu_1_bin = cputime;

cpv_bin = global_optimum( data_cells, type, prior, first );

cpu_2_bin = cputime;

subplot(2,1,2)

% Set up data structure for plotting routine

cell_begin = min_tt + cumsum( cell_sizes ) - cell_sizes(1);

min_height = plot_partition( cpv_bin, xx, cell_sizes, cell_begin, xx );

fprintf(1,'Binned data; %4.3f cpu seconds.\n', (cpu_2_bin - cpu_1_bin) )



5 APPENDIX A: MATLAB CODE 35

5.2 Construct Data Cells

function data_cells = make_data_cells( tt, type, max_delt, bin_size )

%-------------------------------------------------------------------------

% Make data cells from time-tagged data - for input to global optimization

%

% Input: tt -- array of time tags

%

% max_delt -- maximum separation of times

% dt <= max_delt: in same cell

% dt > max_delt: in different cells

%

% type -- cell type: 1: midpoints (~Voronoi)

% 2: intervals (~Delaunay)

% 3: bins

%

% (dt = 0 corresponds to duplicate time tags)

%

% Output: cell_pops -- array of cell populations

%

% cell_sizes -- array of cell sizes

%

% NB: length of type 2 output is one smaller than of type 1

%

%------------------------------------------------------------------

if type == 3

% binned data

[ aa, bb ] = size( tt );

if aa > bb; tt = tt'; end

[ bin_flag, num_data ] = size( tt ); % force row vectors

if bin_flag == 1

cell_pops = tt;

cell_sizes = bin_size * ones(size(tt));

elseif bin_flag == 2

cell_pops = tt(1,:); % bin populations

cell_sizes = tt(2,:); % bins sizes

else

error('Incorrect matrix dimensions in global_optimum.m ...')

end

else
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% TTE data

cell_pops = ones( size( tt ) ); % Initial: one datum per cell

%-----------------------------------------------------------

% Find clumps of points closer together than max_delt

%-----------------------------------------------------------

ii_close = find( diff( tt ) < max_delt );

while ~isempty( ii_close )

ii_start = ii_close(1); % Beginning of clump

%------------------------------------------------

% Index of end of the clump:

% all ii_close-indices up to but not including

% ii_beyond are in clump

%------------------------------------------------

ii_beyond = find( diff( ii_close ) > 1 );

if isempty( ii_beyond )

% All remaining close points are in the clump

ii_end = ii_start + length( ii_close );

else

ii_end = ii_start + ii_beyond(1);

end

ii_clump = ii_start:ii_end;

clump_pop = sum( cell_pops( ii_clump ) );

clump_tt = mean( tt( ii_clump ) );

% put memebers of the clump in one cell:

cell_pops( ii_start ) = clump_pop;

tt( ii_start ) = clump_tt;

% null the cells evacuated by this operation:

for ind = ii_end:-1:ii_start + 1

cell_pops( ind ) = [];

tt( ind ) = [];

end
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ii_close = find( diff( tt ) < max_delt );

end

if type == 1

%-------------

% midpoints

%-------------

dt = diff( tt );

ndt = length( dt );

cell_sizes = 0.5 * ( dt(1:ndt-1) + dt(2:ndt) );

dt_left = dt(1);

dt_rite = dt(ndt);

cell_sizes = [ dt_left cell_sizes dt_rite ];

elseif type == 2

%-------------

% intervals

%-------------

cell_pops( length( cell_pops ) ) = []; % last datum can't define cp!

cell_sizes = diff( tt );

end

end % if type

data_cells = [ cell_sizes; cell_pops ]';
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5.3 Global Optimum

function [ change_points, last, best ] = global_optimum( data_cells, type, ncp_p, first )

%============================================================================================

% Find the optimum partition of sequential data

%----------------------------------------------------------------------------------------

%

% Input: data_cells -- sequential data array, a N x M array:

% * column index: the N data cells (each row is one cell)

% * row index: the M parameters to compute the cost function

%

% type -- data type: 1 --> time tagged data

% 2 --> binned data

%

% ncp_p -- log of parameter in geometric prior for number of changepoints

%

% first -- 0 --> normal "retrospective" mode; analyze all data

% >0 --> trigger mode; return at first sign of a change

%

%-----------------------------------------------------------------------------------------

%

% Output: change_points -- array of change points (index values for input array)

%

% last -- working array of indices\

% |-- for diagnostic purposes only

% best -- working array of optima /

%

%-----------------------------------------------------------------------------------------

[ num_cells, num_parameters ] = size( data_cells );

best = []; % "best(R)" is the value of the optimum at iteration R

last = []; % "last(R)" is the index at which this optimum occurs

%----------------------------------------------------

% Start with the first datum (R=1);

% add the next one at each iteration

%----------------------------------------------------

for R = 1:num_cells

if R == 1

qq = data_cells(R:-1:1, :);

else

qq = cumsum( data_cells(R:-1:1, :) );
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end

[ best(R), last(R) ] = max( [0 best] + ...

reverse( log_post( qq, ncp_p, type )' ) );

if first > 0 & last(R) > first

% Trigger on first significant block

change_points = last(R);

return

end

end

%------------------------------------

% Find the optimum partition

%------------------------------------

index = last( num_cells );

change_points = [];

while index > 1

change_points = [ index change_points ];

index = last( index - 1 );

end



5 APPENDIX A: MATLAB CODE 40

5.4 Load TTE Data

function [ times, channels, detectors ] = load_new_ttedata( file_name )

% load_new_ttedata.m

% Open and read data from TTE files.

% Strip off discrepancies at the end of the data.

% Return the times, channels, and detectors

%

% global talk

talk = 0;

%-----------------

% Open the File

%-----------------

% file_in = ['../newdata/tteascii.0' file_name ]

file_in = [ file_name ];

if talk > 0

fprintf(1,['Loading file ' file_in '\n' ])

end

[ fid message ] = fopen( file_in, 'r');

if fid == -1

fprintf(1,['Error opening file ' file_in '\n'] )

else

if talk > 0

fprintf(1,['Successfully OPENED file ' file_in '\n'] )

end

end

%--------------------------

% Read the File Headder

%--------------------------

format1 = '%s';

% Read the four "words" before the trigger ID

[ a1, count ] = fscanf(fid,format1,5);

% Read the trigger ID

[ a2, count ] = fscanf(fid,format1,1);

if talk > 0

fprintf( 1,'File ID: %s \n', a2 )

end
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% Read the two words before npts

[ a3, count ] = fscanf(fid,format1,3);

% Read npts

[ a4, count ] = fscanf(fid,'%f',1);

npts = a4;

% fprintf(1,'npts: %5.0f\n', npts)

if talk > 0

fprintf( 1, 'npts: %10.0f\n', npts )

end

% read the remaining 23 words in the headder of the file

[ a, count ] = fscanf(fid,format1,23);

%----------------------------------------------------------

% Now read the data: times, channels, detectors

%----------------------------------------------------------

[ times, count_times ] = fscanf(fid,'%f', npts);

[ channels, count_channels ] = fscanf(fid,'%f', npts);

[ detectors, count_detectors ] = fscanf(fid,'%f', inf);

%----------------------------------------------------------

if count_times ~= count_detectors

fprintf(1, 'Different numbers of detectors!:\n')

fprintf(1, 'Read %10.0f times.\n', count_times )

fprintf(1, 'Read %10.0f channels.\n', count_channels )

fprintf(1, 'Read %10.0f detectors.\n', count_detectors )

else

if talk > 0

fprintf(1, 'Read %10.0f times and channels.\n', count_times )

fprintf(1, 'Read %10.0f times.\n', count_times )

fprintf(1, 'Read %10.0f channels.\n', count_channels )

fprintf(1, 'Read %10.0f detectors.\n', count_detectors )

end

end

%---------------------------

% carry out some checks

%---------------------------

ii1 = find( channels ~= 1 & channels ~= 2 & channels ~= 3 & channels ~= 4);

if ~isempty(ii1) %% ~= []
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fprintf(1,'Warning: %4.0f channels are not 1,2,3 or 4!\n', length(ii1) )

end

ii2 = find( detectors ~= 0 & detectors ~= 1 & detectors ~= 2 & detectors ~= 3 ...

& detectors ~= 4 & detectors ~= 5 & detectors ~= 6 & detectors ~= 7);

if ~isempty(ii2) % ~= []

fprintf(1,'Warning: %4.0f detectors are not in 0-7!\n', length(ii2) )

end

[ a, count ] = fscanf(fid,format1,1);

if count == 0

if talk > 0

fprintf(1,'EOF\n')

end

else

fprintf(1,'Error; End of file not reached!\n')

end

%-----------------

% Close the File

%-----------------

message = fclose( fid );

if message ~= 0

fprintf(1,['Error closing file ' file_in '\n'] )

end

%---------------------------------------------------------------

% strip off last few points if they are discrepant, and rescale

%---------------------------------------------------------------

max_strip = 10;

min_discrep = 10;

% Establish baseline of "good data"

n_times = length(times);

baseline_size = fix( 0.01 * n_times );

i2 = n_times - max_strip;

i1 = i2 - baseline_size + 1;

if i1 < 1,i1 = 1; end % Unlikely!

% Remove any points at the end that have a

% relative value that is much greater than

% the average value in the baseline region.
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baseline = mean( times(i1:i2 ) );

discrep = ( times( n_times ) - baseline) / baseline;

count = 0;

while (discrep > min_discrep) & (count < max_strip)

count = count + 1;

n_times = length(times)-1;

times = times(1:n_times);

discrep = (times( n_times ) - baseline) / baseline;

end

%...........................................

n_times = length(times); % Just to be sure

times = times(1:n_times);

channels = channels(1:n_times);

detectors = detectors(1:n_times);
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5.5 Logarithm of the Posterior Probability

function log_prob = log_post( cell_data, ncp_prior, type )

%-----------------------------------------------------------------------------------

% Log posterior (Bayes factor) for constant-rate Poisson data,

% * flat prior on Poisson rate paramter (unnormalized)

% * geometric prior on number of changepoints

%

% Input: cell_data -- MatLab structure containing these arrays:

% cell_sizes -- size of each cell

% cell_pops -- number of events in each cell

% ncp_prior -- complexity parameter (from prior on number of changepoints)

% type -- 1 for TTE data; 2 for binned data

%

% Output: log_prob -- array of corresponding log-posterior probabilities

%

%-----------------------------------------------------------------------------------

[ num_cells, num_arrays ] = size( cell_data );

cell_sizes = cell_data( :, 1 );

cell_pops = cell_data( :, 2 );

if type == 1

%-----------------------------

% TTE data

%-----------------------------

arg = cell_sizes - cell_pops + 1;

ii = find( arg > 0 );

num_bad = length( cell_sizes ) - length( ii );

if num_bad == 0

log_prob = gammaln( cell_pops + 1 ) + gammaln( arg ) ...

- gammaln( cell_sizes + 2 );

else

log_prob = eps * ones( size( cell_pops ) ); % eps is smallest number

log_prob(ii) = gammaln( cell_pops(ii) + 1 ) + gammaln( arg(ii) ) ...

- gammaln( cell_sizes(ii) + 2 );

end

elseif type == 2
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% Binned data

log_prob = gammaln( cell_pops + 1 ) - ( cell_pops + 1 ) .* log( cell_sizes );

end

log_prob = log_prob - ncp_prior; % prior on number of changepoints
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5.6 Plot partitions

function [ min_height, max_height ] = plot_partition( cpv, cell_pops, cell_sizes, cell_begin

% function [ min_height, max_height ] = plot_partition( cpv, cell_pops, cell_sizes, cell_begin

% Plots block representation for any set of cells,

% given the changepoints

% Input: cpv -- array of changepoint indices

% cell_pops -- array of cell populations (points in the cell)

% cell_sizes -- array of the width of the cells

% cell_begin -- array of beginning times of the cells

% (needed to account for gaps in the data)

% xx -- binned data (counts) so that xx / cell_sizes

% gives the event rate: points / unit time

% Output: min_height -- minumum block height

% max_height -- maximum block height

%--------------------------------------------------------------------------------------------

small = 1.e-8;

tick2sec = .000002;

if isempty(cpv) | cpv(1) ~= 1

% Make it so!

cpv = [ 1 cpv ];

end

num_cells = length( xx );

tt_plot = tick2sec * ( cell_begin + 0.5*cell_sizes );

plot( tt_plot, xx ./ cell_sizes, '-g')

hold on

% Sometimes last point is marked as a changepoint

while max( cpv ) >= num_cells

cpv( length( cpv ) ) = [];

end

num_blocks = length( cpv );

min_height = 1e55;

max_height = -1e55;

yy_start = 0;

plot_sym_top = '-b';

line_width_top = 1;

plot_sym_side = '-b';

line_width_side = 1;
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for id_block = 1:num_blocks

index_start = cpv( id_block );

if id_block == num_blocks

index_end = num_cells;

else

index_end = cpv( id_block + 1 ) - 1;

end

ii_this = index_start:index_end;

cell_pops_this = cell_pops( ii_this );

cell_sizes_this = cell_sizes( ii_this );

cell_begin_this = cell_begin( ii_this );

t1 = min( cell_begin_this );

t2 = max( cell_begin_this + cell_sizes_this );

xx_this = xx( ii_this );

if isempty( xx_this )

xx_mean = 0;

else

xx_mean = sum( xx_this );

end

width_active = sum( cell_sizes_this );

yy_plot = xx_mean / width_active;

if yy_plot < min_height

min_height = yy_plot;

end

if yy_plot > max_height

max_height = yy_plot;

end

%--------------------------------------

% Horizontal line for whole block

%--------------------------------------

hh = plot( tick2sec * [ t1 t2 ], yy_plot*[1 1], '-k');

hold on

set(hh,'LineWidth', 2 )

num_cells_this = length( cell_pops_this );
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%------------------------------

% Vertical line at block edge

%------------------------------

t1 = cell_begin_this( 1 );

t2_that = t1;

hh = plot( tick2sec * [t1 t1], [ yy_start yy_plot ], plot_sym_side );

set(hh,'LineWidth', line_width_side )

yy_start = yy_plot;

for id_cell = 1:num_cells_this

t1_this = cell_begin_this( id_cell );

t2_this = t1_this + cell_sizes_this( id_cell );

delt_tt = (t1_this - t2_that);

if delt_tt > small

% There is a gap between this and the previous cell

% ... so plot the prior part of this block

hh = plot( tick2sec * [t1 t2_that], yy_plot*[1 1], plot_sym_top );

set(hh,'LineWidth', line_width_top )

xx_patch = [ t2_that t1_this t1_this t2_that t2_that ];

yy_patch = [ 0 0 yy_plot yy_plot 0 ];

patch( tick2sec * xx_patch, yy_patch, 'g')

disp('gap!')

t1 = t1_this;

end

if id_cell == num_cells_this

hh = plot( tick2sec * [t1 t2_this], yy_plot*[1 1], plot_sym_top );

set(hh,'LineWidth', line_width_top )

end

t2_that = t2_this;

end

end
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% do last vertical line

hh = plot( tick2sec * [t2 t2], [ yy_plot 0 ], plot_sym_side );

set(hh,'LineWidth', line_width_side )

v = axis;

v(1) = tick2sec* min( cell_begin );

v(2) = tick2sec * t2;

v(3) = 0;

v(4) = 1.05*max_height;

axis(v)



5 APPENDIX A: MATLAB CODE 50

5.7 Plot TTE partitions

function [ ii_pulses, count_vec ] = plot_tte( event_times, change_times )

% function [ ii_pulses, count_vec ] = plot_tte( event_times, change_times )

% Input: event_times -- raw times

% change_times -- array of changepoint times

% Output: ii_pulses -- indices for the pulses (local maxima)

% count_vec -- block counts

%------------------------------------------------------------------------------

tick2sec = 2.e-6;

plot_max = -Inf;

%---------------------------

% Plot Blocks

%----------------------------

num_cp = length( change_times );

num_blocks = num_cp + 1;

block_vec = [];

count_vec = [];

count_blocks = 0;

yy_old = 0;

if num_blocks > 0

for id = 0:num_cp

if id < 1

tick_left_this = event_times(1);

else

tick_left_this = change_times(id);

end

if id < num_cp

tick_rite_this = change_times(id + 1);

else

tick_rite_this = event_times( length( event_times ) );

end

nn_this = length( find( event_times >= tick_left_this & ...

event_times <= tick_rite_this ) );

delt_this = tick_rite_this - tick_left_this + 1;

if delt_this > 0 % skip empty blocks
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yy_plot = nn_this / delt_this;

count_blocks = count_blocks + 1;

block_vec = [ block_vec yy_plot ];

count_vec = [ count_vec nn_this ];

if id == 0

yy_left = [ yy_plot yy_plot ];

else

yy_left = [ yy_old yy_plot ];

end

xx_plot_left = tick2sec * tick_left_this;

xx_plot_rite = tick2sec * tick_rite_this;

%---------------

% Left side

%---------------

x_plt = [ xx_plot_left xx_plot_left ];

hh = plot( x_plt, yy_left, '-b');

set(hh,'LineWidth',1);

%---------------

% Right side

%---------------

% x_plt = [ xx_plot_rite xx_plot_rite ];

% hh = plot( x_plt, yy_plot, '-m');

% set(hh,'LineWidth',1);

%---------------

% Top of Block

%---------------

x_plt = [ xx_plot_left xx_plot_rite ];

hh = plot( x_plt, yy_plot*[1 1], '-b');

set(hh,'LineWidth',2)

if yy_plot > plot_max

plot_max = yy_plot;

end

yy_old = yy_plot;

end
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end

end

num_blocks = length( block_vec );

%-----------------------------------------------

% Find peaks (local block maxima)

%-----------------------------------------------

ii_left = 1:num_blocks-2;

ii_mid = ii_left + 1;

ii_rite = ii_left + 2;

ii_pulses = find( block_vec(ii_mid) > block_vec(ii_left) & ...

block_vec(ii_mid) > block_vec(ii_rite) );
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5.8 Reverse (from WaveLab)

function r = reverse(x)

% reverse -- Reverse order of elements in 1-d signal

% Usage

% r = reverse(x)

% Inputs

% x 1-d signal

% Outputs

% r 1-d time-reversed signal

%

% See Also

% flipud, fliplr

%

r = x(length(x):-1:1);

%

% Copyright (c) 1993. David L. Donoho

%

%

% Part of WaveLab Version .701

% Built Tuesday, January 30, 1996 8:25:59 PM

% This is Copyrighted Material

% For Copying permissions see COPYING.m

% Comments? e-mail wavelab@playfair.stanford.edu

%



6 BIBLIOGRAPHY 54

6 Bibliography

References

[Coram 2002] Coram, Marc, (2002), personal communication and Ph. D. thesis, Nonparametric
Bayesian Classi�cation,

http://www-stat.stanford.edu/~mcoram/

[Donoho 1994] Donoho, D.L., (1994), Smooth Wavelet Decompositions with Blocky CoeÆcient Ker-
nels, in Recent Advances in Wavelet Analysis, L Schumaker and G. Webb, eds., Academic Press,
pp. 259-308.

[Hubert, Arabie, and Meulman 2001] Hubert, L., Arabie, P., and Meulman, J., 2001, Combinatorial

Data Analysis: Optimization by Dynamic Programming, SIAM: Philadelphia

[Kolaczyk 1996] Kolaczyk, Eric D., (1996), \Estimation of Intensities of Inhomogeneous Poisson Pro-
cesses Using Haar Wavelets," Technical Report 436, Department of Statistics, The University of
Chicago, Chicago, to be submitted to Journal of the Royal Statistical Society, Series B..

[Kolaczyk 1999] Kolaczyk, E.D. (1999). Bayesian Multi-Scale Models for Poisson Processes. Journal
of the American Statistical Association, 94, 920-933.

[Kolaczyk 2000] Kolaczyk, E.D. and Dixon, D.D. (2000). Nonparametric estimation of intensity maps
using Haar wavelets and Poisson noise characteristics. The Astrophysical Journal, 534:1, 490-505.

[Kolaczyk 1998] Kolaczyk, E.D. (1998) Wavelet Shrinkage Estimation of Certain Poisson Intensity
Signals Using Corrected Thresholds. Statistica Sinica, 9, 119-135.

[Kolaczyk 1998] Kolaczyk, E.D. (1997) Non-Parametric Estimation of Gamma-Ray Burst Intensities
Using Haar Wavelets. The Astrophysical Journal, Vol. 483, 340-349.

[Kolaczyk and Nowak 2002] Kolaczyk, Eric D. and Nowak, Robert D., (2002), \Multiscale Statistical
Models," Penn State Statistical Challenges 3

[Kolaczyk and Nowak 2002] Kolaczyk, Eric D. and Nowak, Robert D., (2002), \A Multiresolution
Analysis for Likelihoods: Theory and Methods," preprint

[Nowak and Figueiredo 2002] Nowak, Robert D., and Figueiredo, Mario A. T., \Unsupervised Pro-
gressive Parsing of Poisson Fields Using Minimum Description Length Criteria," preprint

[Nowak and Figueiredo 2002] Nowak, Robert D., and Figueiredo, Mario A. T. (2002), \Unsupervised
Segmentation of Poisson Data," preprint

[Okabe, Boots, Sugihara and Chiu 2000] Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. (2000),
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley and Sons, Ltd.,
New York, Second Edition

[ �O Ruanaidh and Fitzgerald 1996] �O Ruanaidh, J. J. & Fitzgerald, W. J., 1996, Numerical Bayesian
Methods Applied to Signal Processing, Springer: New York.



REFERENCES 55

[Scargle 1981] Scargle, J. (1981), Studies in astronomical time series analysis. I: Modeling random
processes in the time domain. Ap. J. Supp., 45, 1-71.

[Scargle 1998] Scargle, J., 1998, \Studies in Astronomical Time Series Analysis. V. Bayesian Blocks,
A New Method to Analyze Structure in Photon Counting Data", Astrophysical Journal, 504, p.
405-418, Paper V. http://xxx.lanl.gov/abs/astro-ph/9711233

[Scargle 2001a] Scargle, J. D., (2001), Bayesian Blocks: Divide and Conquer, MCMC, and Cell Co-
alescence Approaches, in Bayesian Inference and Maximum Entropy Methods in Science and En-

gineering, 19th International Workshop, Boise, Idaho, 2-5 August, 1999. Eds. Josh Rychert, Gary
Erickson and Ray Smith, AIP Conference Proceedings, Vol. 567, p. 245-256.

[Scargle 2001b] Scargle, J. D., (2001a), \Bayesian Estimation of Time Series Lags and Structure,"
Contribution to Workshop on Bayesian Inference and Maximum Entropy Methods in

Science and Engineering (MAXENT 2001), held at Johns Hopkins University, Baltimore,
MD USA on August 4-9, 2001.

[Scargle 2001c] Scargle, J. D., (2001), \Bayesian Blocks in Two or More Dimensions: Image Segmenta-
tion and Cluster Analysis," Contribution toWorkshop on Bayesian Inference and Maximum

Entropy Methods in Science and Engineering (MAXENT 2001), held at Johns Hopkins
University, Baltimore, MD USA on August 4-9, 2001.

[Scargle and Babu 2002] Scargle, J. D., and Babu, G. J. (2002), \Point Processes in Astronomy:
Exciting Events in the Universe," Chapter 20 of Handbook of Statistics: Stochastic Processes:
Modeling and Simulation, 2002, Elsevier Science.


