
Studies in Astronomical Time Series Analysis.

VI. Optimal Segmentation: Blocks, Triggers, and Histograms

Jeffrey D. Scargle

Space Science Division, NASA Ames Research Center

Jay Norris

Laboratory for High Energy Astrophysics

Code 661, NASA Goddard Space Flight Center

Brad Jackson

San José State University, Department of Mathematics and

Computer Science,

The Center for Applied Mathematics and Computer Science

Draft of July 11, 2006. Warning: this document is under construc-

tion. Notation in various sections may not yet be consistent.

Abstract

This paper addresses the problem of detecting and characterizing
local variability in time series. Since such data are always corrupted
by observational errors, the goal is to find statistically any significant
variations and ignore the inevitable random noise fluctuations. We
present a simple nonparametric modeling technique and an algorithm
implementing it—an improved and generalized version of Bayesian
Blocks [Scargle 1998]—that finds the optimal partitioning of the ob-
servation interval. The structure of the algorithm allows it to be used
in either a real-time, trigger mode, or a retrospective mode. The neces-
sary maximum likelihood or marginal posterior functions to measure
model fitness are presented for points, binned counts, and measure-
ments at arbitrary times with a known error distribution. The same
algorithm can also be used to compute histograms.

1

CONTENTS 2

Contents

1 Introduction: Block Segmentation 4

2 The Model: Piecewise Constant 5

3 Optimum Partition of an Interval 7

3.1 Data Cells . 7

3.2 Blocks of Cells . 9

3.3 Partitions . 10

3.4 Fitness of a Partition 10

3.5 Changepoints . 11

3.6 A Lemma on Subpartitions 12

3.7 The Algorithm . 13

4 Block Fitness Functions for Sequential Data 15

4.1 Event Data . 17

4.1.1 Poisson Distributed Event Data 19

4.1.2 0-1 Event Data: Duplicate Time Tags Forbidden 23

4.1.3 Time-to-Spill Data 25

4.2 Binned Data . 26

4.3 Measurements with Normal Errors 27

4.4 Distributed Measurements 31

4.5 Gaps and Mixed Data Modes 34

4.6 Prior for Number of Blocks 35

5 Examples 38

5.1 Determination of the Parameter γ 38

5.2 Dynamic Range . 39

5.3 Point Data Time Series 40

CONTENTS 3

5.4 Binned Data . 42

5.5 Maximum Likelihood Histograms 46

5.6 Measurements with Normal Errors 49

5.7 Real Time Analysis: Triggers 50

6 Appendix A: MatLab Code 53

6.1 Main Program . 53

6.2 Construct Data Cells 56

6.3 Global Optimum . 59

6.4 Load TTE Data . 62

6.5 Logarithm of the Cost Function 63

6.6 Plot partitions . 66

6.7 Plot TTE partitions 66

6.8 Reverse (from WaveLab) 66

7 Bibliography 68

1 INTRODUCTION: BLOCK SEGMENTATION 4

1 Introduction: Block Segmentation

The goal is to detect local signals in noisy time series data. The term

local excludes global structures, such as periodic signals that extend

over all or a large part of the observation interval. Instead we target

signal features that are confined to a limited interval of time, and either

do not repeat or repeat at random times.

A key goal is to impose as few prior conditions on the signal as pos-

sible. In particular, we wish to avoid smoothness or shape assumptions

that place a priori limitations on scales and resolution. The algorithm

should handle arbitrary sampling (i.e., not be limited to gapless, evenly

spaced data) and large dynamic ranges in amplitude and scale. For sci-

entific data mining applications and for objectivity, the method should

be automatic. It should eliminate noise as much as possible, while

conserving most of the valid information in the data. It should be

applicable to multivariate problems. Incorporation of auxiliary, extrin-

sic data, such as spectral or color information, and variable exposure,

should be possible. It should be able to operate both retrospectively

(optimal model of all the data after it is collected) and in a real-time

fashion that triggers on the first significant variation of the signal from

its initial value.

Our algorithm achieves these desiderata in a simple computational

framework that is easy to use and represents the structure in the signal

in a form handy for further analysis and the estimation of physically

meaningful quantities. It includes an automatic penalty for model

complexity, thus solving the vexing problem often called determining

the order of the model. It is exact, not a greedy approximation1 as

in [Scargle 1998].
1An iteration making an optimal improvement at each step, but not guaranteed of an optimal overall solution.

2 THE MODEL: PIECEWISE CONSTANT 5

Its limitations include that it detects local, rather than global, struc-

ture, and while much faster than an explicit search of the exponentially

large parameter space, the runtime of the simple algorithm is O(N 2).

This computational complexity is considered prohibitive in some large

problems, but an effective way to reduce the time to ∼ NlogN is in

development.

These desiderata suggest the use of the most generic possi-

ble nonparametric data model, and have motivated our devel-

opment of data segmentation and Bayesian changepoint methods

[Ò Ruanaidh and Fitzgerald 1996]. It is remarkable that a very simple

idea – fitting of piecewise constant models to the data – achieves

essentially all of the above desiderata. This approach yields a step-

function, or segmented, representation of the signal in which the range

of the independent variable (e.g. time) is automatically divided into

unequal subintervals, in each of which the dependent variable (e.g.

intensity) is modeled as constant.

2 The Model: Piecewise Constant

As just indicated we are led to employ a very simple model, in which

the data interval is partitioned into segments (here called blocks) and

the signal is taken to be constant within each segment. The model

has three parameters for each block: the start time, the duration, and

the signal amplitude. In the model of the full data interval the first

two are not independent, since one block begins where another leaves

off. Specifically, we represent these parameters in terms of a finite set

of changepoints, essentially one per block. For event data the signal

amplitude is more specifically the Poisson rate parameter.

This representation is in the spirit of a nonparametric approxima-

2 THE MODEL: PIECEWISE CONSTANT 6

tion, and not meant to imply that we believe the signal is actually dis-

continuous. The crude, blocky appearance of our discontinuous model

may be a liability in the context of visualization, but for our inter-

ests in deriving physically meaningful quantities we have not found

it so. Blocky models are useful in broad signal processing contexts

[Donoho 1994], and have several motivations. Their simplicity allows

exact treatment of the likelihood. We can optimize or marginalize the

rate parameters exactly, giving simple formulas for the fitness func-

tion. And we regard the estimated model itself as less important than

quantities derived from it. For example, while smoothed plots of pulses

within gamma-ray bursts make pretty pictures, one is really interested

in pulse locations, lags, amplitudes, widths, rise and decay times, etc.

These quantities can be accurately determined directly from the loca-

tions, heights and widths of the blocks.

Especially for applications in measuring similarity among time series

and pattern matching, piecewise linear models are often used (cf the

work of Heikki Mannila and Eamonn Keogh). Such models may have a

better visual appearance, but in our experience the improved flexibility

is largely offset by added complexity of the model and its interpreta-

tion. Note further that if continuity is imposed at the changepoints, a

piecewise linear model has essentially the same number of parameters,

or degrees of freedom, as does the simpler piecewise constant model.

Below §3 discusses partitions of the data interval, a convenient data

representation scheme, and the new algorithm for computing optimal

partitions. Then §4 exhibits the computation of cost functions for a

variety of data modes, followed by numerical simulations and other

examples in §5.

3 OPTIMUM PARTITION OF AN INTERVAL 7

3 Optimum Partition of an Interval

Our algorithm works on any sequential data. We introduce it in a

somewhat abstract setting because it can be used for other partitioning

problems beyond time series analysis. In a special case it implements

Bayesian blocks or other 1D segmentation ideas for any model fitness

function that satisfies a simple additivity condition. It improves on our

previous approximate segmentation algorithms by achieving a rigorous

solution of the multiple changepoint problem, and is guaranteed to

find the global maximum, not just a local one. This is made possible

by reducing the infinite optimization search space to a finite set of

partitions consisting of blocks containing discrete data cells, as we now

demonstrate.

3.1 Data Cells

The set of possible values of the independent variable is called the

data space. For the one dimensional case treated here, the data space

is usually an interval, such as the time over which observations have

been made. The measured quantity can be almost anything. Most

commonly it is either a physical variable or the density of discrete

events.

Consider observational data comprising N sequential elements

xn, n = 1, 2, . . . , N. (1)

The specific meaning of the quantities xn is left vague because almost

any of a wide variety of data types can be treated within this for-

malism. Simple examples are: points, counts of points in bins, and

measurements – correspondingly, the array x would contain point co-

ordinates; counts, bin sizes and locations; and measured values and

3 OPTIMUM PARTITION OF AN INTERVAL 8

their uncertainties, respectively. The only requirement is that the data

be ordered (i.e., sequential), meaning that each xn is associated with

a time tn, such that the latter are ordered and contained in some time

interval I :

min(I) ≤ t1 < t2 < . . . < tN ≤ max(I) . (2)

In general tn specifies the time of measurement, be it a point or an

interval. For event data (also called point data), tn is just the time

of event n. Although times are often represented as real numbers, the

finite accuracy of measurement means that one is really specifying an

integer multiple of some small unit of time (typically on the order of

milliseconds to microseconds in high energy astrophysics). For cases

such as binned counts or measurements averaged over finite time in-

tervals, the time interval must be specified, either explicitly (as in an

array giving the lengths of a series of unequal time bins) or implicitly

(e.g. through specification of bin size and time of the first bin).

It is convenient to represent sequential data with a data structure

consisting of a set of N data cells

Cn ≡ {xn, tn} , (3)

derived from the raw data. They form an ordered sequence with re-

spect to the independent variable t, can be grouped into blocks (§3.2)

forming partitions of I (§3.3), and contain whatever data quantities

are necessary to evaluate the fitness (§3.4) of an arbitrary partition.

In some cases two or more data elements are combined into a single

cell (see e.g. the discussion of duplicate time tags in §4.1), but for

the most part data cells correspond one-to-one with data elements. In

some cases (e.g. time-tagged event data) tn is contained in xn and

need not be separately specified. Figure 1 is a cartoon of typical data

3 OPTIMUM PARTITION OF AN INTERVAL 9

cells.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32(a)

1 2 3 4 5

block 1
6 7 8 9 10 11 12 13 14 15 16 17

block 2
18 19 20

block 3
21 22 23 24 25 26 27 28 29 30 31

block 4
32

block 5

(b)

Figure 1: Pictorial representation of data cells and the blocks made from them. The horizontal
axis represents the independent variable (often, but not necessarily time), with respect to which
the data are ordered. The sequential order depicted in Panel (a) is the only essential requirement
for data to be analyzable with our block algorithm. Panel (b) exemplifies the partition of the
set of data cells into blocks. The shaded cells are changepoints marking the beginnings of the
blocks.

3.2 Blocks of Cells

A block is a set of adjacent cells. Panel (b) of Figure 1 shows a sequence

of 32 data cells divided into five blocks. The following notation for

blocks is useful:

B(n,m) ≡ {Cn, Cn+1, . . . Cm} , (4)

that is m − n + 1 cells in sequence. The case m = n represents a

block consisting of just one cell, as in the last block of the partition in

Figure 1(b). The model of the time series data is segmented into blocks,

meaning that any model parameters are constant within each block but

undergo discrete jumps at the changepoints (§3.5) marking the edges of

the blocks. The fitness of a block is of elementary importance, because

3 OPTIMUM PARTITION OF AN INTERVAL 10

the fitness of a partition (§3.4) is the sum of the fitness of the blocks

comprising it.

3.3 Partitions

A partition of the interval I is simply a set of non-overlapping blocks

that together add up to the whole interval.2 A partition can be de-

fined by specifying the number of blocks (the elements of the partition)

Nblocks, and the block edges nk:

P(I) ≡ {Nblocks, nk, k = 1, 2, 3, . . . Nblocks} . (5)

There are one fewer changepoints than blocks, since by convention the

first block begins at the first data cell – n1 ≡ 1 is implicit – and the

last block terminates with the last data cell. As described in §3.4 we

will seek the partition that maximizes a given function over all possible

partitions. How big is this search space if there are N cells? Establish

a 1-1 mapping between partitions and binary numbers of length N ,

by setting the k-th digit to 1 if cell k is a changepoint, 0 otherwise.

Remembering that the first cell is always a changepoint, the number

of partitions is then

Npartitions = 2N−1 (6)

Except for short time series this number is too large for an exhaustive

search, but our algorithm nevertheless finds the optimum over this

space in a time that scales as only N 2.

3.4 Fitness of a Partition

Since our goal is to model data, we maximize3 a quantity measuring

the fitness of models in a specified class. We take as this model class
2Formally a partition of I is a set of blocks satisfying I =

⋃
k Bk and Bj

⋂
Bk = ∅ (the null set), for j 6= k.

3Alternatively, one can minimize an error measure. Both are called optimization.

3 OPTIMUM PARTITION OF AN INTERVAL 11

all partitions of the interval, with a given statistical model for each

block of the partition. If the observational errors at different times are

independent, as is often the case, fitness is additive over blocks:

F [P(I)] =
Nblocks∑

k=1
f (Bk) , (7)

where F [P(I)] is the total fitness and f (Bk) is the fitness of block k.

Our algorithm depends explicitly on this additivity.

Specific examples and details of fitness functions are given below

in §4. What is important here is that we marginalize, or otherwise

eliminate, all parameters of the block models except the times defining

the beginning and end of the block (Paper V). Then the total fitness

depends on only P(I). The best model is found by maximizing F

over all partitions. As an example, the fitness function we adopt for

count data does not depend on the Poisson rate parameters – they can

be computed in an almost trivial way, once the changepoints of the

optimum partition are determined.

3.5 Changepoints

We call the time separating two blocks a changepoint4. In principle

a changepoint could be anywhere in the interval, but we restrict them

to occur at the times corresponding to the data cells. The reasoning

is that moving a changepoint lying between two data cells to a new

location between the same cells does not sensibly change the model’s

representation of the data. This simplification reduces the search over

an infinite space to a finite optimization problem.

In some applications it might be useful to assign a data cell that is
4In statistics, a changepoint in a time series is a point at which the statistical model undergoes an abrupt

transition, usually by one or more of its parameters jumping to a new value

3 OPTIMUM PARTITION OF AN INTERVAL 12

a changepoint to be in both the subsequent and previous blocks, but

here we assign it to only one – with the convention that a changepoint

is the first cell in the subsequent block (rather than the last cell of the

previous block). Correspondingly, since the smallest partition consists

of a single block containing all data cells, the first data cell is always

a changepoint. If the last cell is a changepoint, it demarcates a block

consisting of that one cell, as in panel (b) of Figure 1, where the five

changepoints dividing the data cells into five blocks are shaded.

3.6 A Lemma on Subpartitions

We define a subpartition of a given partition P(I) to be a partition (of

a subset of I) consisting of a subset of the blocks of P(I). Although not

a necessary condition for the lemma to be true, in all cases of interest

here the blocks in the subpartition are contiguous, and thus form a

partition of a subinterval of I . Below we will make use of this simple

result on subpartitions of optimal partitions:

Lemma: A subpartition of an optimal partition is

an optimal partition of the subset it covers.

Let P′ be the subpartition and I ′ the subset of I that it covers. If there

were a partition of I ′, different from and fitter than P′, then combining

it with the blocks of P not in P′ would, by the block additivity condition,

yield a partition of I fitter than P, contrary to the optimality of P.

Corollary: removing the last block of an optimal partition leaves an

optimal partition.

3 OPTIMUM PARTITION OF AN INTERVAL 13

3.7 The Algorithm

We have assembled the definitions and results needed to state

our procedure and prove that it finds a global optimum parti-

tion. This algorithm is in the spirit of dynamic programming

[Hubert, Arabie, and Meulman 2001]. It begins with the first data cell,

adding one more at each step until the whole interval has been treated.

This feature makes the algorithm suitable for real-time applications

(see §5.7).

The proof is by mathematical induction: if a theorem is true for R =

1, and one can show that, if it is true for R then it is true for R+1, then

the theorem holds for all R. At step R the algorithm finds the optimum

partition of the interval comprised of data cells IR ≡ {C1, C2, . . . CR}.
To analyze all the data, take R = 1, 2, . . . N . The case R = 1 is trivial:

there is only one cell, and the only partition possible is the optimum

one.

Now suppose we have completed step R, having obtained the opti-

mal partition Popt[IR], hereafter abbreviated Popt(R), and are now at

step R + 1 and wish to find the optimal partition Popt(R+1). Assume

further that we have kept a running record of the fitness of the optimum

partition obtained at each previous step (call this array best) and the

location of the last changepoint in that partition (call this array last).

It is straightforward to compute

M(r) ≡ f [B(r, R + 1)] (r = 1, 2, . . . R + 1) (8)

that is, the fitness of a putative last block starting at r and extending

to the end of the current interval. For example M(1) is the fitness of

the whole interval currently in play, namely the cells from 1 through

R + 1.

3 OPTIMUM PARTITION OF AN INTERVAL 14

Using the block additivity of fitness, Eq. (7), the fitness of the

partition of IR+1 consisting of the optimum partition Popt[Ir−1] followed

by a single block B(r, R + 1) is:

A(r) = M(r) + { 0 r = 1
best(r − 1), r = 2, 3, . . . , R + 1 , (9)

Now comes the key reasoning step. While we don’t yet know what

it is, the new optimum partition Popt(R + 1) must exist and must have

a last changepoint, say r∗.5 From its definition A(r∗) is the fitness of

Popt(R + 1). In particular, best(r∗ − 1) is the fitness of the optimal

subpartition consisting of all but the last block of Popt(R + 1), and

M(r∗) is the fitness of said last block. Further, any partition with its

last changepoint at some other r 6= r∗ must have fitness not greater

than that of Popt(R + 1), so we have

A(r) ≤ A(r∗) for r 6= r∗ . (10)

In other words, the maximum of A(r) occurs at r∗:

r∗ = argmax[A(r)] , (11)

so finding the fitness and last changepoint of Popt(R+1) is just a matter

of finding the maximum of the array A and the index r at which this

maximum occurs.

At the end of the computation, it only remains to find the locations

of the optimal changepoints. The needed information is contained in

the array last(r) in which we have stored the index r∗ at each step.

Using the corollary of the subpartition lemma, it is a simple matter

to use the last value in this array to determine the last changepoint

in P opt(N), peel off the end section of last corresponding to this last

block, and repeat. That is to say, the values
5Any finite combinatorial optimization problem has at least one solution. Also, all partitions have at least

one changepoint.

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 15

(1) cp1 = last(N)

(2) cp2 = last(cp1 − 1)

(3) cp3 = last(cp2 − 1)

. . .

are the index values giving the locations of the changepoints, in reverse

order. The positions of the changepoints are not necessarily fixed until

the very last iteration, although in practice it turns out that they

become more or less “frozen” once a few succeeding changepoints have

been detected.

The MatLab code for the algorithm in Appendix XX indicates how

all of these computations are implemented.

4 Block Fitness Functions for Sequential Data

Here we outline the computation of model fitness. The fitness func-

tion for a fixed block of data numerically evaluates how well a constant

signal strength represents whatever data lie in that block. The result-

ing quantities for all blocks in the observation interval are combined to

form a fitness measure for the complete (piecewise constant) model.

For our algorithm to work, in addition to being block-additive [§3.4,

Eq. (7)], the total model fitness must depend on only parameters

which specify the locations of the block edges, i.e. the changepoints

(§3). We must account for and eliminate all other parameters. The

only ones in our model are the block signal strengths, which can be

eliminated by taking block fitness to be the likelihood either maximized

or marginalized with respect to signal strength. In both cases the result

is a quantity assessing alternative models for the data, not an absolute

goodness-of-fit.

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 16

Computation of fitness functions varies with the data mode, but the

following features are common to all cases considered in this paper.

The fitness function always depends on only the parameters describing

the error distribution of whatever measurements lie in the block. For

event data governed by the Poisson distribution (§§4.1, 4.2), there are

exactly two such sufficient statistics : N , the number of events in the

block, and M , the length of the block. In other cases (e.g. §4.3) the

number of parameters depends on the form of the distribution. If the

sufficient statistics for a block are the sums of those for its cells (as in

all cases treated here), the computations are simplified; however this

condition is not essential.

It is interesting to note some things that do not matter, because they

do not change the sufficient statistics. For example, the actual locations

of the data cells within their assigned blocks do not matter. The cells

in a block need not even be contiguous. This allows a very simple

treatment of data gaps. Or the cells near the beginning and the end

of the interval might be assigned to the same block. For example, the

pre-burst and post-burst data from a gamma ray burst could combine

into a single block representing a constant background. An algorithm

explicitly allowing wraparound would be a natural way to deal with

this case. These extensions are of most interest for higher dimensional

data, and will be further discussed in a future paper.

Finally, there are two types of factors in a fitness function that can

be ignored, for different reasons. First, a factor in the likelihood for

each data cell that does not depend on the rate parameter yields a

simple constant factor for the whole time series (namely the product

of the factor over all the data cells), independent of both the rate pa-

rameter and where the changepoints lie. Such a factor cancels out in

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 17

any explicit model comparison, and is irrelevant as well for the implicit

model comparison that takes place in our optimization algorithm. Sec-

ond, there are factors in the fitness function for each block that are

independent of the rate parameter. These factors do matter, but they

contribute to the log of the fitness function a term proportional to the

number of blocks, and as such can be absorbed into the parameter

derived from the prior on the number of blocks (cf. §4.6).

Many of the data modes discussed in the following subsections are

part of the Burst and Transient Source Experiment (BATSE) experi-

ment on board the now-defunct NASA Compton Gamma Ray Observa-

tory (GRO). However, they are relevant to a wide range of astronomical

data acquisition systems, especially in high energy astrophysics.

4.1 Event Data

Sometimes the physical process, or perhaps the way it is recorded,

takes the form a sequence of discrete events, each yielding a point in

the data space. (In practice, the coordinates of the points are inte-

ger multiples of some small but finite unit–and are thus discrete, not

continuous. This fact is important for the computations below.) The

quantity of ultimate interest is the distribution function of the points,

interpretable as the intensity or probability density of some physical

variable. Accordingly the terms density estimation and rate estima-

tion are sometimes used. A key example is the case where the events

are the detection of individual photons, the corresponding points are

the measured detection times, and the quantity of interest is the radi-

ation intensity as a function of time.

For point data, it is natural to associate one cell with each event.

However, if the detector can detect two (or more) events that are si-

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 18

multaneous to within its timing accuracy, such pairs would be assigned

to the same cell. Since data cells must contain whatever information

is necessary to compute the fitness function of a block containing the

cells (§3.1), the data structure representing the cells must contain the

number of events assigned to the cell (most often 1) and the length of

the interval associated with the event.

There is more than one way to make such an association be-

tween sequential events and intervals. Perhaps most natural is

to assign to a point all times closer to it than to any other

data point. This resulting intervals join the midpoints between

successive events. This concept generalizes to data spaces of any

dimensions (where it is called the Voronoi tessellation of the

data points, [Okabe, Boots, Sugihara and Chiu 2000, Scargle 2001a,

Scargle 2001c]), allowing finite partitions which adequately approxi-

mate the infinite set of arbitrary partitions.

Alternatively, one can use the intervals between successive data

points–assigning half of an event to the interval immediately to its left

and half to the one immediately to its right. This choice may handle

the onset of a steep gradient in the underlying density slightly better,

and is also easily generalized to higher dimension where it is known as

the Delaunay triangulation [Okabe, Boots, Sugihara and Chiu 2000].

The algorithm described below allows use of either of these interval

schemes.

The analysis in §2.2.1 of [Scargle 1998] can be carried over largely

unchanged to the cell-based approach described here. But we offer

several extensions of that work. First, we develop a new class of fitness

functions based on maximizing the likelihood with respect to the rate

parameter, in contrast to marginalizing it as in computing the Bayesian

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 19

posterior. In addition, for the case where we compute the posterior we

consider a prior with a finite range, as opposed to the flat prior over an

infinite range. And we include variable bin size and exposure factors.

As mentioned above, and detailed in §2.2.1 of [Scargle 1998], assume

that there is an elementary quantum of time–a tick–set by the mea-

surement system. This is the finest time resolution the measurement

apparatus is capable of recording. Let nm be the number of events

(e.g. photons) detected in tick m. We consider two data modes. In

mode 1 the number of events in a given tick is presumed to follow a

Poisson distribution. Mode 2 corresponds to situations where detection

of more than one event at a given time is not possible, typically due

to the deadtime of the detector, so that the number of events in a tick

can be only 0 or 1. An example is time-tagged event (TTE) data in

which duplicate time tags are not allowed. The fitness functions for

the two modes, while similar, are different enough that the appropriate

one should be used in practice.

4.1.1 Poisson Distributed Event Data

For mode 1, the likelihood for tick m is, from the Poisson distribution

Lm =
λnm e−λ

nm!
. (12)

The block likelihood is the usual product

L(k) =
Mk∏

m=1

λnme−λ

nm!
. (13)

where Mk is the number of ticks in block k. Simplifying and collecting

the factors for ticks with the same number of events, we have

L(k) = e−λMk ∞∏
n=0

(
λn

n!
)H(n) , (14)

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 20

where H(n) is the number of ticks in the block with n events. The

factor resulting from the factorial in the denominator is a constant, in-

dependent of the model, and therefore irrelevant for model comparison.

Dropping this factor, and noting that
∑∞

n=0 nH(n) = Nk, we have

L(k) = λNk
e−λMk

(15)

In this context it is often suggested that one should employ the inter-

vals between successive events, since they in some sense carry the rate

information more directly than do the actual times. We will now show

that the likelihood based on intervals is essentially equivalent to the

one above. It is a classic result [Papoulis 1965] that intervals between

independent events distributed uniformly in time with a constant rate

λ is exponential:

P (dt) = λe−λdtU(dt), (16)

where U(x) is the unit step function:

U(x) = 1 x ≥ 0

= 0 x < 0

Pretend that the data consists of the inter-event intervals, and we do

not even know the absolute times. The likelihood of our constant-rate

Poisson model for interval dtn ≥ 0 is

Ln = λe−λdtn, (17)

so the block likelihood is

L(k) =
Nk∏

n=1
λe−λdtn = λNk

e−λMk
, (18)

This likelihood is the same as that in Eq. (15).

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 21

There are two ways to proceed. The first is to find the maximum of

this likelihood as a function of λ, which is at λ = Nk

Mk , so we have

Lmax = (
Nk

Mk
)N

k
e−Nk

(19)

The log of this expression,

logLmax = Nk(log Nk

Mk − 1) , (20)

is the maximum likelihood fitness function for event data following a

Poisson distribution.

In the other approach, we marginalize the likelihood in Eq. (15)

with the finite-range constant prior, giving

P =
1

λ2 − λ1

∫ λ2

λ1
λNk

e−λMk
dλ (21)

yielding

P =
1

λ2 − λ1

1

(Mk)Nk+1

∫ z2

z1
zNk

e−zdz (22)

where z1,2 = Mkλ1,2. In terms of the incomplete gamma function

γ(a, x) ≡
∫ x

0
za−1e−zdz (23)

this is

P = 1
λ2−λ1

1

(Mk)N
k+1

[γ(Nk + 1, z2)− γ(Nk + 1, z1)] . (24)

The unnormalizable flat prior that extends to infinity gives

P = 1

(Mk)N
k+1

Γ(Nk + 1) , (25)

differing slightly from Eq. (29) of [Scargle 1998] only because of differ-

ent priors for λ.

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 22

Another commonly used prior is the so-called conjugate Poisson dis-

tribution

P (λ) = C λα−1e−βλ . (26)

As noted by [Gelman] this “prior density is, in some sense, equivalent

to a total count of α-1 in β prior observations” a relation that might

be useful in some circumstances. The normalization constant C = βα

Γ(α)

will be ignored. With this prior the marginalized posterior probability

is

P =
∫ ∞
0

λN (k)+α−1e−λ(M (k)+β)dλ , (27)

or

P = Γ(N (k)+α)

(M (k)+β)N
(k)+α

(28)

Note that this prior and posterior reduce to those in Eqs. (28) and

(29) of [Scargle 1998] for α = 1, β = 1.

Equations (20), (24), (25) and (28) are the forms to be used whenever

the counts in each tick follow the Poisson distribution. This includes

both time-tagged data where duplicate tags are permitted and, as we

will see below in §4.2, binned data.

Recently [Prahl 1996] has derived a statistic for event clustering in

Poisson process data that tests departures from the known interval

distribution (see the discussion above), by evaluating the likelihood

over a restricted interval range. Prahl’s statistic is

MN =
1

N

∑

∆Ti<C∗
(1− ∆Ti

C∗) , (29)

where ∆Ti is the interval between events i and i + 1, and

C∗ ≡ 1

N

∑
∆Ti (30)

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 23

is the empirical mean interval. In other settings, the fact that this

statistic is a global measure of departure of the distribution (used here

only locally, over one block) may be useful in the detection of periodic,

and other global, signals in event data. Results using the Prahl statistic

are given below in §5.

4.1.2 0-1 Event Data: Duplicate Time Tags Forbidden

In this mode duplicate time tags are not allowed, the number of events

detected at a given tick is 0 or 1, and the corresponding tick likelihood

is:

Lm(λ) = e−λ = 1− p nm = 0 (31)

= 1− e−λ = p nm = 1 (32)

where λ is the model event rate. From the Poisson distribution p =

1−e−λ is the probability of an event, 1−p = e−λ that of no event. We

can therefore use p or λ interchangeably to specify the event rate. Since

independent probabilities multiply, the block likelihood is the product

of the tick likelihoods:

L(k) =
Mk∏

m=1
Lm = pNk

(1− p)M
k−Nk

(33)

where Mk is the number of ticks in block k and Nk is the number of

events in the block.

There are again two ways to proceed. The maximum of this likeli-

hood occurs at p = Nk

Mk and is

Lmax = (
Nk

Mk
)N

k
(1− Nk

Mk
)M

k−Nk
(34)

Using the logarithm of the maximum likelihood,

log(Lmax) = Nklog(Nk

Mk) + (Mk −Nk)log(1− Nk

Mk) (35)

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 24

yields the additivity needed for our cost function.

An alternative way to quantify the fitness of the class of constant

models to marginalize the rate parameter. That is to say, we remove

this parameter by integrating it out:

P (Bk) =
∫

L(k)P (λ)dλ , (36)

where P (λ) is the prior probability distribution for the rate parameter.

Here we adopt a generic prior that is consistent with not having any

particular prior information about the event rate, except that it must

be positive. In [Scargle 1998] we used p as the independent variable,

and chose a prior flat (constant) as a function of p. Here, we use a

prior flat as a function of the rate parameter:

P (λ) = 1
λ2−λ1

λ1 ≤ λ ≤ λ2 (37)

= 0 otherwise (38)

The posterior, marginalized over λ is then:

P =
1

λ2 − λ1

∫ λ2

λ1
(1− e−λ)N

k
(e−λ)M

k−Nk
dλ . (39)

Changing variables to p = 1 − e−λ, with dp = e−λdλ, this integral

becomes

P =
1

λ2 − λ1

∫ p2

p1
pNk

(1− p)M
k−Nk−1dp , (40)

with p1 = 1 − e−λ1 and p2 = 1 − e−λ2, expressible in terms of the

incomplete beta function

B(z; a, b) =
∫ z

0
ua−1(1− u)b−1du (41)

as follows:

P = 1
λ2−λ1

[B(p2; N
k + 1,Mk −Nk)−B(p1; N

k + 1,Mk −Nk)] .

(42)

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 25

The incomplete beta function reduces to the ordinary beta function

for z = 1, so for the infinite range case λ1 = 0, λ2 = ∞; p1 = 0, p2 = 1

we have

P∞ = B(Nk + 1,Mk −Nk) , (43)

differing from Eq. (21) of [Scargle 1998] by one in the second argument,

due to the difference between a prior flat in p and one flat in λ. All

of the equations (35), (42), and (43), in their logarithmic form, can be

used as fitness functions in the global optimization algorithm, and will

be demonstrated below.

4.1.3 Time-to-Spill Data

As discussed in §2.2.3 of [Scargle 1998], reduction of the necessary

telemetry rate is sometimes accomplished by recording only the time

of detection of every Sth photon, e.g. with S=64 for the BATSE time-

to-spill mode. This data mode has the attractive feature that its time

resolution is greater when the source is brighter (and possibly more ac-

tive, so that more time resolution is useful). The likelihood in Eq. (32)

of [Scargle 1998] simplifies, with slightly revised notation and using the

fourth comment at the beginning of this section, to

L
(k)
TTS = λSNspillse−λM (44)

where Nspills is the number of spill events in the block, and M is as

usual the length of the block. With N = NspillsS this is identical

to the Poisson likelihood in Eq.(15), and in particular the maximum

likelihood is at λ =
NspillsS

M and the corresponding cost function is

logL
(k)
max,TTS = SNspills(log

NspillsS

M
− 1) (45)

just as in Eq. (20) with N = SNspills, and with the same property

that the unit in which block lengths are expressed is irrelevant.

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 26

4.2 Binned Data

One of the most common data modes consists of counts in bins. The

bins are typically predefined intervals in the measured variable. The

count Nn in bin n is simply the number of values in it. The data cells

are simply the bins and their associated counts:

Cell n ≡ {bin n,Nn}, n = 1, 2, . . . , Ntotal. (46)

Absent correlation effects, such as dead time, the probability distribu-

tion for the number of events of a bin is Poisson, and this data mode is

equivalent to that discussed above in §4.1.1, with the bins taking the

role of the ticks of that section. Here we generalize these results (and

those in [Scargle 1998]) in two ways, allowing unequal bin sizes and a

variable efficiency factor. The latter, sometimes called exposure, refers

to anything that affects the count (e.g. instrumental sensitivity, dwell

time, or uncorrected atmospheric effects). Assume that, whatever the

nature of the effect, it can be represented by an efficiency factor be-

tween 0 and 1, such that the effective Poisson event rate is E times

the actual (observed or modeled) event rate. Because of the nature of

our piece-wise constant Poisson model, these two effects–bin size and

bin efficiency–are equivalent in simply altering the local event rate, and

can be represented with a single parameter equal to the product of the

bin’s width and efficiency.

The likelihood for bin n is found from the Poisson distribution:

Ln =
(λEnWn)Nne−λEnWn

Nn!
(47)

where λ is the actual event rate, in counts per unit time, and Nn is the

number of events in the bin. The bin width Wn is expressed in the same

units as λ−1. The efficiency factor En is averaged over the bin. The

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 27

product WnEn can be replaced with a single quantity, wn ≡ WnEn,

expressing relative bin efficiencies.

The likelihood for block k is the product of the likelihoods of all its

bins:

L(k) =
M (k)∏

n=1
Ln = λN (k)

e−λw(k)
. (48)

Here M (k) is the number of bins in block k,

w(k) =
M (k)∑

n=1
wn (49)

is the sum of the bin efficiencies in the block, and

N (k) =
M (k)∑

n=1
Nn (50)

is the total event count in the block. We have discarded the factor

(EnWn)Nn/Nn! in Eq. (47) because, when multiplied out over all blocks

in any model it produces a model-independent factor–its product over

all bins. Any such common factor is irrelevant for model comparison.

Note that the block likelihood is essentially the same as that of

Eq. (15). The only difference is that what we called a tick is now

called a bin, and we have allowed for a bin efficiency factor (which in

principle could be applied to ticks). Hence the maximum likelihood

and marginal posterior cost functions to be used here are the same

as those of Equations (20), (24), (25) and (28), with M (k) interpreted

as the block-sum of the wn instead of just the number of ticks in the

block.

4.3 Measurements with Normal Errors

Here is a very common signal processing scenario: in order to estimate

a signal embedded in noise, one makes measurements at a sequence

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 28

of times. For example, if the noise is additive one has this nearly

ubiquitous model for the time series observations:

xn ≡ x(tn) = f (tn) + zn n = 1, 2, . . . N , (51)

where f is the unknown signal, z is the noise, and the observation

times tn may be evenly spaced or otherwise. We here consider the

case where the noise is assumed to be normally distributed and with a

known variance:

P (zn|σn) =
1

σn

√
2π

e−
1
2(zn

σn
)2 (52)

The data cell then is denoted

Xn = {xn, tn, σn} n = 1, 2, . . . , N , (53)

where xn is the value measured at time tn, and σn is the standard

deviation of the noise.

In a block where the true signal is λ, the likelihood of measurement

n is then

Ln =
1

σn

√
2π

e−
1
2(xn−λ

σn
)2 (54)

and the entire likelihood for block k is

L(k) =
∏

n

1

σn

√
2π

e−
1
2(xn−λ

σn
)2 (55)

where the product is over all n such that tn falls within the block. The

exponential is the only factor that matters, since the rest contributes

to the total posterior probability the constant factor

(2π)−
N
2

∏N
n=1 σn

, (56)

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 29

where here the product is over all N data points. Hence the block

likelihood can be written

L(k) = e−
1
2

∑
n(xn−λ

σn
)2 (57)

The maximum of this likelihood is found as follows: Clearly we can

just as well minimize the quantity

Q(λ) =
1

2

∑

n
(
xn − λ

σn
)2 , (58)

which can be done by setting its derivative to zero:

dQ(λ)

dλ
= −∑

n
(
xn − λ

σ2
n

) (59)

so that

λmax =

∑
n(xn

σ2
n
)

∑
n(1

σ2
n
)

(60)

Letting ρn = 1
σ2

n
be the weight corresponding to the variance of mea-

surement n, and putting the resulting expression

λmax =
∑

n ρnxn
∑

n ρn
(61)

into the log of Eq. (57), we have

logP = −1

2

∑

n
ρn(xn −

∑
n ρnxn
∑

n ρn
)2 (62)

logP = −1

2

∑

n
ρn[x2

n − 2xn

∑
n ρnxn
∑

n ρn
+ (

∑
n ρnxn
∑

n ρn
)2] (63)

logP = −1

2
[
∑

n
ρnx

2
n − 2

(
∑

n ρnxn)2
∑

n ρn
+

(
∑

n ρnxn)2
∑

n ρn
] (64)

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 30

logP = −1

2
[
∑

n
ρnx

2
n −

(
∑

n ρnxn)2
∑

n ρn
] (65)

logP = −1
2[x̄

2 − x̄2
∑

n ρn
] (66)

This expression is related to the weighted variance, although there

seems to be no universal choice for how to define same. But it makes

sense that the block cost function is this variance: the best constant

model for the block should have minimum variance.

As in the other cases, we can alternatively marginalize λ, by choosing

the flat, unnormalizable prior

P (λ) = constant (67)

yielding for the marginal posterior

P (Bk) =
∫ ∞
−∞ e−

1
2

∑
n(xn−λ

σn
)2 dλ (68)

Setting

ak =
1

2

∑

n

1

σ2
n

(69)

bk = −∑

n

xn

σ2
n

(70)

and

ck =
1

2

∑

n

x2
n

σ2
n

(71)

we have

P (Bk) =
∫∞
−∞ e−

1
2(akλ2+bkλ+ck) dλ (72)

=
√

π
ak

e
(

b2k
4ak

)−ck (73)

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 31

The total posterior is of course

P =
∏

k
P (Bk) (74)

or, in terms of the additive log-posterior, we have

logP =
∑

k logP (Bk) =
∑

k[−1
2log(ak) + (

b2k
4ak

)− ck] (75)

where the sum is over all blocks, k.

As with the other data modes, either of equations (66) or (75) can

be used for normally distributed data.

4.4 Distributed Measurements

The data can also consist of measurements of a quantity, averaged over

a range of values of t – not at discrete point, as in the previous section.

A good example is the spatial power spectra computed from measure-

ments of the cosmic microwave background radiation [refs.], where the

different experiments have widely different window functions (the term

used to describe sensitivity as a function of the independent variable

– i.e., spatial harmonic number in the CMB case). In this case the

data array could consist of the structure in Equation (53) augmented

by the inclusion of a window function, indicating the variation of the

instrumental sensitivity:

x = {xn, tn, wn(t− tn)} n = 1, 2, . . . , N , (76)

where wn(t) describes, for the value reported as Xn, the relative weights

assigned to times near tn, and all other quantities are as in Eq. (53).

This is a nontrivial complication if the window functions overlap,

but can nevertheless be handled with the same technique.

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 32

We assume the standard piece-wise constant model of the underlying

signal, that is, a set of contiguous blocks:

B(x) =
Nb∑

j=1
B(j)(x) (77)

where each block is represented as a boxcar function:

B(k)(x) = { Bj ζj ≤ x ≤ ζj+1
0 otherwise (78)

the ζj are the changepoints, satisfying

min(xn) ≤ ζ1 ≤ ζ2 ≤ . . . ζj ≤ ζj+1 ≤ . . . ≤ ζNb
≤ max(xn) (79)

and the Bj are the heights of the blocks.

The value of the observed quantity, yn, at xn, under this model is

ŷn =
∫
wn(x)B(x)dx

=
∫
wn(x)

∑Nb
j=1 B(j)(x)dx

=
∑Nb

j=1
∫
wn(x)B(j)(x)dx

=
∑Nb

j=1 Bj
∫ ζj+1
ζj

wn(x)dx

(80)

so we can write

ŷn =
Nb∑

j=1
BjGj(n) (81)

where

Gj(n) ≡
∫ ζj+1

ζj
wn(x)dx (82)

is the inner product of the n-th weight function with the support of

the j-th block. The analysis in [Bretthorst 1988] shows how do deal

with the non-orthogonality that is generally the case here.6

6If the weighting functions are delta functions, it is easy to see that Gj(n) is non-zero if and only if xn lies in
block j, and since the blocks do not overlap the product Gj(n)Gk(n) is zero for j 6= k, yielding orthogonality,∑

N Gj(n)Gk(n) = δj,k. And of course there can be some orthogonal blocks, for which there happens to be no
“spill over”, but these are exceptions.

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 33

[Note: the following repeats some of the above, and therefore needs

to be rewritten.]

The averaging process in this data model induces dependence among

the blocks. The likelihood, written as a product of likelihoods of the

assumed independent data samples, is

P (Data|Model) =
∏N

n=1 P (yn|Model) (83)

=
∏N

n=1
1√
2πσ2

n

e−
1
2(yn−ŷn

σn
)2 (84)

=
∏N

n=1
1√
2πσ2

n

e−
1
2(

yn−
∑Nb

j=1 BjGj(n)
σn

)2 (85)

= Qe−
1
2(

yn−
∑Nb

j=1 BjGj(n)
σn

)2 , (86)

where

Q ≡ N∏

n=1

1
√
2πσ2

n

. (87)

After more algebra and adopting a new notation, symbolized by

yn

σ2
n

→ yn (88)

and
Gk(n)

σ2
n

→ Gk(n) , (89)

we arrive at

logP ({yn}|B) = Qe−
H
2 , (90)

where

H ≡ N∑

n=1
y2

n − 2
Nb∑

j=1
Bj

N∑

n=1
ynGj(n) +

Nb∑

j=1

Nb∑

k=1
BjBk

N∑

n=1
Gj(n)Gk(n) .

(91)

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 34

The last two equations are equivalent to Eqs. (3.2) and (3.3) of

[Bretthorst 1988], so that the orthogonalization of the basis functions

and the final expressions follow exactly as in that reference.

4.5 Gaps and Mixed Data Modes

In some cases there are subintervals over which no events are possible

(e.g. gaps due to failures in the detector system). What matters is

the “live time” during the block, and this is simply the sum of the cell

lengths. Thus data gaps can be handled by ignoring them! The only

subtlety lies in interpreting what the model implies if a block extends

across a gap. For each block the procedure yields the optimum rate

parameter for whatever data lies in the block, ignoring any gaps. At

the end of the procedure, for display purposes the gaps can be restored

and plotted, preferably with some indication that rates within gaps are

more uncertain.

Only if the fitness function depends on the total length of the block,

and not just the live time, do the lengths of the overlap between the

block and these gaps need to be included. The only example of this

we have encountered results from the adoption of a prior distribution

of block width.

Furthermore, one can even mix data modes. E.g., bins of arbitrary

sizes can be combined with point data. As with gaps the only burden

for doing this is placed on the fitness function, which in this case would

have to include a provision for data of mixed modes falling within

the block. An example of this would be the analysis of both binned

and time-tagged event (TTE) data for gamma-ray bursts observed by

BATSE.

Which of the several posteriors above should be used? Should a

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 35

new fitness function be constructed, based on ones understanding of

the data and potential signals? If the conjugate prior is used, what

values of its two parameters should be used? The answers depend on

what is known about the data and its errors, as well as what one wants

to assume about the signal. To aid in making such choices, §5.4 has

relevant examples.

4.6 Prior for Number of Blocks

In earlier work [Scargle 1998] no explicit prior probability distribution

was assigned the number of blocks, i.e. the parameter Nblocks. This

omission amounts to using a flat prior, but in many contexts it is

unreasonable to assign the same prior probability to all values. In

particular, in most settings Nblocks << N is a priori much more likely

than Nblocks ≈ N . For this reason it is desirable to impose a prior that

assigns smaller probability to a large number of blocks, and we adopt

this geometric prior [Coram 2002]:

P (Nblocks) = P0γ
−Nblocks (92)

for 0 ≤ Nblocks ≤ N , and zero otherwise since Nblocks cannot be neg-

ative nor larger than the number of data cells. The normalization

constant – irrelevant for model comparison – is easily obtained, giving

P (Nblocks) =
1− 1

γ

1− (1
γ)N+1

γ−Nblocks (93)

Through the dependence of this prior on Nblocks, the value of γ affects

the number of blocks in the optimal representation–a number of some

importance since it affects the visual appearance of the representation

and to a lesser extent the values of quantities derived from it. To favor

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 36

smaller numbers of blocks, γ must be > 1; as it increases beyond 1 there

are fewer and fewer blocks in the optimal representation. Thus, while

it is not explicitly a smoothing parameter, its effect can be mistaken

for such.

It is of some use to compute from eq. (92) the expected number of

blocks:

< Nblocks > = P0

N∑

Nblocks=0
Nblocksγ

−Nblocks (94)

The sum can be evaluated to give:

< Nblocks > =
1

γ − 1
+

N + 1

1− γN+1
(95)

The form in Eq. (92) is not the only prior possible, but it is very

convenient to implement, since with the fitness equal to the log of the

posterior, one only needs to subtract the constant log γ from the fitness

of each block. A few examples will now show how the value of γ can

be determined, and demonstrate that, especially with good signal-to-

noise, the block representation is not very sensitive to the precise value

adopted.

Figure 2 is the result of one such simulation study of BATSE TTE

data, using all 523 bursts with at least 1, 000 photons. An ordinary

histogram of all photons in a burst, with 1024 evenly spaced bins, was

taken as the true signal for that burst. Then 10 random subsamples

of 1
8-th as many photons were put through the algorithm, using the

maximum likelihood cost function, Eq. (20). The resulting block rep-

resentation was evaluated at the same 1024 time points as the true

signal; the RMS difference between the two was taken as the measure

of error. This operation was done for the 32 values of ln γ shown in the

figure, and for 10 realizations of the random eightfold downsampling.

4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 37

0 2 4 6 8 10 12 14 16
0

0.05

0.1

M
ea

n
 E

rr
o

r

ln γ

0 2 4 6 8 10 12 14 16
0

20

40

60

N
u

m
b

er
 o

f
B

u
rs

ts

optimum ln γ

Figure 2: Simulation study for the parameter γ. Top panel: Error, averaged over 10 resamplings
of 104 BATSE TTE bursts, vs. ln γ (3σ error bars). Bottom panel: Distribution of values of
ln γ giving minimum error for the individual bursts.

The error curve (upper panel) is relatively flat, nearly constant for lnγ

in the approximate range 2-8, with a nominal optimum at 5. Since the

optimal values of γ vary somewhat widely from burst to burst (bot-

tom panel), the flatness of the error curve means that the errors in the

block representation of the light curves will not be greatly in error if

one adopts a single value of γ for all bursts. Some of this scatter is no

doubt due to the dependence of the optimal γ on the number of data

cells, but the latter does not vary over enough of a range to allow us

to study this effect here.

The effect7 of log γ in this and other simulations seems to level off
7A large value of this parameter naturally has the effect of reducing the number of blocks, producing a block

representation that has less structure – giving a smoother visual appearance. But the parameter is not explicitly

5 EXAMPLES 38

at around 6. We have adopted the value 8 in the examples shown here.

A simple argument, due to Mike Nowak, yields γ ≈ N , where N is the

number of data points.

These results are given not as a universal result for γ but because

the general shape of the curve in Fig. 2 does seem characteristic of

a wide variety of situations. We recommend that persons using the

algorithm carry out simulations of this kind to study the behavior of

the algorithm as a function of γ for their application.

5 Examples

This section presents results using the algorithms given in the Appendix

on various sample data sets.

5.1 Determination of the Parameter γ

In applications, one must specify the prior for the number of blocks.

The convenient geometric prior described in §4.6 amounts to the as-

sumption that the prior probability of k +1 blocks is a constant factor,

namely 1
γ , times that for k blocks. Values of γ > 1 express the no-

tion that a small number of blocks is a priori more likely than a large

number.

In principle, the value of γ depends on one’s prior knowledge of the

number of blocks, but in applications it is rare that one can express

this knowledge simply. In this section we perform block analysis of

synthetic data where, knowing the correct answer, we can determine

the best value.
a smoothing parameter.

5 EXAMPLES 39

5.2 Dynamic Range

One of the goals listed in §1 was that the algorithm have a large dy-

namic range. Here we give an example meant to demonstrate the

dynamic range in both time and amplitude. The synthetic signal is

a single block superimposed on a constant background, and the data

are a set of points drawn from a distribution with the corresponding

shape. The value log(γ) = 8 was used, and we adjusted the number of

0.249 0.2492 0.2494 0.2496 0.2498 0.25 0.2502 0.2504 0.2506 0.2508 0.251

0

1

2

3

4

5

6

7

Dynamic Ranges −− Time: 1:10,000 Event Rate: 40:1

time

C
ou

nt
s

Figure 3: Maximum likelihood segmentation of a synthetic spike: 8 events in .0001 second on
a background of 2000 events over the unit interval, only a small fraction of which is plotted.
The solid lines at the top of the figure indicate the edges of the actual block; the dotted lines
are the two changepoints of the optimal segmentation. The actual points are shown just below
the histogram of the raw counts.

events in the spike to be as small as possible and still detect the spike.

The errors in the block edges (-4 and +17 microseconds) are just per-

5 EXAMPLES 40

ceptible in the figure. For as few as 4 events the spike was detectable

only by making log(γ) = 4, and with larger errors.

The next figure depicts a segmentation analysis meant to demon-

strate the ability of the algorithm to handle a signal that has a large

dynamic range in amplitude. The signal consists of three adjacent

blocks on a small, constant background. The middle block has a much

smaller amplitude, and the goal is to see if the near presence of large

spikes on either side affects its edges. The rates in the spikes are roughly

a million times the background rate and several thousand times the rate

of the central satellite block. The dotted lines near the top signify the

estimated block edges, or changepoints, whereas the solid lines denote

the actual edge locations. The errors in the four edge locations are all

less than 10−8 seconds. Our method is essentially impervious to large

amplitude differences within a signal. In fact, increasing the number

of counts in the main spikes in this example would only enhance the

determination of the edges.

5.3 Point Data Time Series

Figure 6 shows the optimal block decompositions of data for a γ-ray

burst based on the point data comprising the TTE data for BATSE

trigger 0551 (reference). The value log(γ) = 8 was used for the param-

eter in the prior. This analysis is based on the first 14, 000 photon time

tags for this burst. The full data set consists of 28, 904 photons, but

the last half is essentially background. Since the data are time tagged

events, we used the form of the posterior given in Equation TBD. Need

to compare duplicates allowed with not allowed.

Figure 7 shows the TTE data summed over all four energy channels,

analyzed with four different values of the prior parameter log γ. The

5 EXAMPLES 41

0.2499 0.25 0.2501 0.2502 0.2503 0.2504 0.2505 0.2506 0.2507
0

2000

4000

6000

8000

10000

12000

14000

16000

Rates (Mc/s) −− spike 1: 500 satellite: 0.25 spike 2: 1000 background: 0.001000

time

C
ou

nt
s

Figure 4: Maximum likelihood segmentation of a set of block with a large range of amplitudes.
Each block has a width of 200 microseconds, with 100,000, 50, and 200,000 events, respectively,
while the background consists of 1,000 events over the full 1 second interval analyzed. The
central block and background are almost imperceptible on the scale of the figure. The analysis
parameters are the same as in Fig. 3

first panel corresponds to a flat prior, giving too much prior probability

to large numbers of changepoints. The obvious symptom is the appear-

ance of many short spikes, corresponding to narrow intervals in which

statistical fluctuations are elevated by the inappropriate prior into ap-

parent significance. These putative features that are probably not real,

and—while they represent a small amount of fluence (intensity × du-

ration), they are cosmetically obnoxious and confound, for example,

procedures for automated identification of pulses (local maxima).

The second panel, with a prior that gives lower weight to large

5 EXAMPLES 42

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−5

Poisson ML

Bernoulli, ML

Bernoulli, Improper Prior

Bernoulli, Finite Prior

log(gamma)

M
ea

n
 E

rr
o

r

Figure 5: Simulation study, to find optimum value of the parameter logγ.

numbers of changepoints has fewer spikes. By the time one reaches

log γ = 4, there is little change in the representation (cf. Figure 12).

This result is not necessarily universal, but the figures shown here in-

dicate that the value log γ = 8 is quite reasonable and that values

somewhat lower or higher would not make any real difference in the

final representation.

5.4 Binned Data

Figure 5 shows the block representation for a portion of the light curve

of the first burst in the BATSE catalog, observed on April 21, 1991,

5 EXAMPLES 43

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

Trigger 0551

A
ll

C
h

s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

C
h

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

C
h

 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

C
h

 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

C
h

 4

Figure 6: Optimal partitions of BATSE TTE data for Trigger 0551. All photons were used in
the top panel; the others are based on the smaller number of photons detected in each of the
four BATSE energy channels.

Trigger 0105. These data are available [BATSE www site] 8 in binned

format, with larger bins at the beginning, transitioning to smaller bins

at the fiducial trigger time.

The three panels in the figure are for different values of the prior

parameter log γ . The first case, log γ = 0, corresponds to a flat prior.

With this rather strong encouragement for a large number of blocks,

it is seen that the block representation is identical to the raw binned
8BATSE continuously recorded data in time bins 1.024 seconds long, and the time series posted on the web

has 116 seconds of such low-resolution data pre-pended to the 16 times higher (64 millisecond bins) resolution
data starting at the fiducial trigger time. To make the bins equal, the numbers given on the web site apportion
the counts in each large bin into 16 small bins. Since our analysis can handle unequal bins, we have undone
this, and reconstructed the actual integer counts in the larger bins.

5 EXAMPLES 44

0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1
log α = 0

R
at

e

0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2
log α = 2

R
at

e

0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2
log α = 4

R
at

e

0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2
log α = 8

R
at

e

 t(sec)

Figure 7: Optimal partitions of BATSE TTE data for Trigger 0551. Same as the first panel of
Figure 3, except that four different values of log γ were used: 0, 2, 4 and 8

data. Even the coarse pre-trigger bins that seem to be combined into

large blocks because their event rates are so similar, are represented as

separate blocks.

The second panel, log γ = 8, corresponds to the best choice for the

parameter, and can here be taken as the best block representation of

these data. The last panel, log γ = 16, corresponds to too much of

a penalty against a large number of blocks. One notes that the most

intense peak, which is resolved into two peaks in the other panels, is

here a single peak.

5 EXAMPLES 45

Finally, for comparison in Figure 6, we show analyses of the same

data, unbinned, binned, and time-to-spill, for BATSE Trigger 0551.

This figure was created with the MatLab code included in the Appendix

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

T
T

E
 (

cp
s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

B
in

ne
d

(c
ps

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

T
T

S
(c

ps
 /

64
)

time (seconds)

Figure 8: BATSE Trigger 0551. Top: TTE data. Middle: same data, binned into 256 bins.
Bottom: same data, converted to time-to-spill data with S = 64.

and available electronically. Note that the results for the three different

data modes are nearly identical, except for details of the first pulse.

5 EXAMPLES 46

5.5 Maximum Likelihood Histograms

One may obtain data in order to study the probability distribution of

the measured variable. The histogram [Silverman 1999, Scott 1992] is

perhaps the simplest estimator for the underlying distribution func-

tion,9 but is known to be sensitive to the choice of bins. Procedures for

choosing the number of bins, such as Sturges’ rule or Kevin Knuth’s

entropy-based approach [Knuth 2005], and for eliminating sensitivity

to bin locations, such as the average shifted histogram, have been

designed to achieve various goals [Scott 1992].

Almost always the bins are taken, somewhat arbitrarily, to be equal

in size. A simple way to achieve greater resolution where the data

warrant it, sometimes called the equi-depth histogram, is to make

each bin contain the same number of points – leaving the problem of

choosing this number.

Note that if the measurements are arranged in increasing order, one

can think of the underlying probability density as a signal, and use

segmentation ideas to model and estimate it. In particular, a straight-

forward piecewise constant density estimate provides a data-adaptive

histogram in which the number and location of the bins are deter-

mined by the data themselves. The fitness functions derived above

for independently distributed point data are appropriate for any his-

togram estimation, since counts of events in intervals are governed by

the Poisson distribution. If one has little or no information about the

measurement errors or the smallest measurable difference (the quan-

tum of the measurement, cf. §4.1), as if often the case, the maximum

likelihood fitness function in Eq. (20) is appropriate. Its invariance
9However, the empirical cumulative distribution function is also very useful and can be evaluated almost

trivially and nonparametrically [Scott 1992].

5 EXAMPLES 47

property makes specification of scale of the measured variable or its

quantum unnecessary.

It remains to specify the prior on the number of blocks. Figure

(9) depicts the results of a Monte Carlo study of maximum likelihood

histograms of synthetic data from a Poisson process which changes

rate at known locations. The error of the representation was computed

2 2.5 3 3.5 4
3

3.5

4

4.5

5

5.5

6

 log
10

(gamma) = 1.33 log
10

(N) + 0.52

log
10

(N)

O
p

ti
m

u
m

 lo
g 10

 (
 γ

)

Figure 9: Simulation study for histograms.

by comparing the number and location of the actual and estimated

changepoints, with the result that the optimum value of the parameter

log(γ) in the geometric prior can be determined. This kind of study

is only valid for the specific problem simulated, but it is reasonable

to assume that the results would not be drastically different for other

situations. It is natural that the optimum parameter depend on the

5 EXAMPLES 48

number of data points, and the figure shows an empirical relationship.

Figure 10 histograms of readily available data on the durations of

eruptions of the Old Faithful geyser in Yellowstone National Park.

The top part of the figure is based on 107 measurements from

[Weisberg 1980], also found in Table 2.2 of [Silverman 1999]. The latter

author uses these data to demonstrate a number of existing density es-

timation methods, including conventional fix-bin histograms, the naive

estimator, kernel estimators with kernels of various widths, the nearest

neighbor method, variable kernels, orthogonal series estimators, max-

imum penalized likelihood estimators, general weight function esti-

mators, and others. It is dangerous to use data from a phenomenon

that is not understood in detail. In particular, here we do not know

what the true distribution is. But it may be instructive to compare our

segmentation results with those in textbooks such as [Silverman 1999].

The main difference in the upper panel of Figure 10 is that the max-

imum likelihood histogram is consistent with a bimodal distribution

consisting of two rather flat components; with the ordinary histogram,

while the bimodality may be pretty secure, the shapes of the compo-

nents are ambiguous. The histograms in the lower panel, with more

than twice as much data, more or less confirm the correctness of our

description based on the data in the upper panel.

5 EXAMPLES 49

5.6 Measurements with Normal Errors

First consider a simulation consisting of measurements at arbitrary

times in an interval. These variates are taken to be zero-mean-normal,

except over an unknown sub-interval where the mean is instead an

unknown nonzero constant. Figure 11 shows synthetic data for three

simulated realizations with different values for this constant. The solid

line is the Bayesian blocks representation, using the posterior in Eq.

(75). For the smallest amplitude (first panel), no changepoints are

found and so the signal is completely missed. In the next panel, the

solution is correct except that the second changepoint is one point

too early, while the solution in the third panel gets both changepoints

correct.

In this experiment the points are evenly spaced, but only their order

matters, so the results would be the same for arbitrary spacing of the

data points.

A recent paper [Arias-Castro, Donoho and Huo 2003] on multiscale

methods discusses essentially the same problem and develops several

theorems for the aysmptotic behavior of optimal detectors of such sig-

nals. To quote these authors, “In short, we can efficiently and reliably

detect intervals of amplitude roughly
√

2logN , but not smaller.” Fig-

ure 4 reports some results of detection of the same normally distributed

step-function process shown in Figure 11. The solid lines show the root-

mean-square residuals from the true function, while the dashed line

This figure generally confirms this theoretical result, since the errors

(both and a measure of the errors in the number and location of the

changepoints) are

5 EXAMPLES 50

5.7 Real Time Analysis: Triggers

Because of its incremental structure, our algorithm is well suited for

real-time analysis. Starting with a small amount of data, the algorithm

typically finds no changepoints. But at each step, by determining

the optimal partition up to and including the most recently added

data cell, the algorithm effectively tests for the presence of the first

changepoint10. If the real time mode is selected, our algorithm halts

at the first significant changepoint and reports its location. Of course

other halting conditions are possible, e.g. that a changepoint be found

and its position remain stable for a fixed number of steps.

The real time mode can detect the presence of a time-dependent

signal rising significantly above a slowly varying background. For ex-

ample, in a photon stream the resulting trigger indicates the presence

of a new bursting or transient source.

The usual way to approach this and similar problems is to report a

detection if and when the actual event rate, averaged over some interval,

exceeds one or more pre-set thresholds. See [Band 2002] for an exten-

sive discussion, as well as [Fenimore et al. 2001, McLean et al. 2003,

Schmidt 1999] for other applications in high energy astrophysics. One

must consider a wide range of configurations: “BAT uses about 800

different criteria to detect GRBs, each defined by a large number of

commandable parameters. [McLean et al. 2003]”. Both the size and

locations of the intervals over which the signal is averaged affect the

result, and therefore one must consider many different values of the cor-

responding parameters. The idea is to minimize the chances of missing

a signal because, for example, its duration is poorly matched to the

interval size chosen. If the background is determined dynamically, by
10It is rare, but not impossible, that this first indication of change yields more than one changepoint.

5 EXAMPLES 51

averaging over an interval in which it is presumed there is no signal,

similar considerations apply to this interval.

In principle, our segmentation algorithm greatly simplifies the above

considerations, since predefined bin sizes and locations are not needed,

and the background is automatically determined in real time. In prac-

tice, the situation is not so simple. If one lets the data stream accumu-

late continuously, the N 2 dependence of the compute time eventually

makes the computations unfeasible, so in practice it is necessary to

adopt a finite window size, and only analyze the data in this sliding

window. But slow variations in the background in many cases would

mandate something like a sliding window.

Because of additional complexities, such as accounting for back-

ground variability and the Pandora’s box that spectral resolution opens

[Band 2002], we will defer a serious treatment of triggers to a future

publication.

We end this discussion with a brief discussion of a simple topic, of

an issue that can be relatively easily discussed, namely the false alarm

(also called false positive) – no signal is present but a noise fluctua-

tion passes the algorithm’s detection criteria. Unavoidably a detection

procedure embodies a trade-off between sensitivity and false alarms.

Other things being equal, making an algorithm more able to detect

weak signals renders it more sensitive to noise fluctuations. Making

an algorithm avoid noise fluctuations renders it insensitive to weak sig-

nals as well. In applications one typically chooses the balance of these

competing factors based on some notion of the relative importance of

avoiding false positives and not missing weak signals. Hence there can

be no universal prescription.

Identification of a good algorithm may include adopting criteria that

5 EXAMPLES 52

are relatively more sensitive to signal and less to noise, perhaps mak-

ing use of prior information about the nature of both target signals

and observational noise. And typically a given algorithm contains one

or more parameters that can be adjusted, empirically or otherwise,

to achieve improved selectivity. A simple example: detection occurs

when the data exceed a threshold, the value of which is the adjustable

parameter.

The corresponding parameter in our algorithm is log(γ). In the

real-time mode, this parameter has a simple interpretation: it fixes the

value of the prior odds ratio for triggering (vs. not triggering)

log
P (two blocks)

P (one block)
= −log(γ) (96)

Figure 13 quantifies the false alarm rate as a function of this parameter,

from analysis of signal-free Poisson noise11. The maximum likelihood

cost function was used, and its scale independence means that only

the number of random photons in each input interval, here denoted

N , matters, and not the photon rates—as approximately confirmed in

this figure. The increased scatter for large values of logγ is due to the

small number of tabulated false positives. The figure can be used to

set the value of ln(γ) to achieve a desired maximum false alarm rate.

11The rates plotted are the number of detections divided by the number of photons analyzed. This denomi-
nator is less than the number of simulated photons, due to the termination of the algorithm upon triggering.

6 APPENDIX A: MATLAB CODE 53

6 Appendix A: MatLab Code

This section contains MatLab12 code for the analysis tools. The func-

tion fit evaluates the natural logarithm of the fitness function, and

reverse reverses the order of an array. The quantity eps is the small-

est number representable on the current machine. All other constructs

and functions are standard MatLab.

6.1 Main Program

This program computes two different segmented representations of

BATSE data for a gamma-ray burst. These code listings can be used

to recreate Figure 8, as well as verifying all of the other code modules.

The time-tags of the photon detections are the raw data, and in (2)

and (3) these same times are binned and converted to time-to-spill,

respectively. The array cell_sizes contains the widths of each bin,

which need not be equal as they are in this example.

% test_global.m
%---
% Optimal segmentation, for three data modes:
% (1) TTE data (2) binned data (3) TTS data
%---

first = 0; % Retrospective (not real-time) mode
tick2sec = .000002; % convert 2 microsecond ticks to seconds

%--
% Load BATSE TTE Data; make histogram
%--

[tt, channels, detectors] = load_ttedata(’tteascii.00551’);
min_tt = min(tt); max_tt = max(tt);
bins = linspace(min_tt, max_tt, 256);
dt_bins = bins(2) - bins(1); % bin width
xx = hist(tt, bins); % make binned data

12 c© the Mathworks, Inc.

6 APPENDIX A: MATLAB CODE 54

%--
% Optimal segmentation: raw TTE Data
%--

max_delt = 1; % Max separation of time tags
data_type = 1;
bin_size = 2; % 2 microsecond ticks
data_cells = make_cells(tt’, data_type, max_delt, bin_size);
ncp_prior = 8;
cpv_1 = global_optimum(data_cells, data_type, ncp_prior, first);

subplot(3,1,1)
plot(tick2sec * bins, xx/dt_bins, ’-g’) % plot binned data for reference
hold on
[ii_pulses, count_vec] = plot_tte(tt, tt(cpv_1), 1);
v = axis;
v(1) = tick2sec*min_tt;
v(2) = tick2sec*max_tt;
axis(v)
ylabel(’TTE (cps)’)

%---
% Optimal segmentation: binned version of same data
%---

cell_sizes = dt_bins * ones(size(xx));
data_cells = [cell_sizes; xx;]’;
cost_type = 2;
cpv_2 = global_optimum(data_cells, cost_type, ncp_prior, first);

subplot(3,1,2)
cell_begin = min_tt + cumsum(cell_sizes) - cell_sizes(1);
min_height = plot_partition(cpv_2, xx, cell_sizes, cell_begin, xx);
ylabel(’Binned (cps)’)

%---
% Optimal segmentation: TTS version of same data
%---

ss_tts = 64;
tts_data = tt(1:ss_tts: length(tt));
data_cells = make_cells(tts_data’, data_type, max_delt, bin_size);
data_cells(:, 2) = ss_tts * ones(size(tts_data));
ncp_prior = 8;
cpv_3 = global_optimum(data_cells, data_type, ncp_prior, first);

6 APPENDIX A: MATLAB CODE 55

subplot(3,1,3)
plot(tick2sec * bins, xx/(ss_tts*dt_bins), ’-g’) % plot binned data for reference
hold on
[ii_pulses, count_vec] = plot_tte(tts_data, tts_data(cpv_3), 1);
v = axis;v(1) = tick2sec*min_tt;v(2) = tick2sec*max_tt;axis(v)
ylabel(’TTS(cps / 64)’);xlabel(’time (seconds)’)

set(gcf,’PaperPosition’, [0 0 7 4.5])
print -depsc2 C:\global_paper\ttebin3.epsc2

6 APPENDIX A: MATLAB CODE 56

6.2 Construct Data Cells

This routine constructs data cells, takinginto account time tags that are identical or so close
that they are to be assigned to the same cell, and similar details. For binned data, the routine
simply constructs the matrix of the proper data elements.

function data_cells = make_cells(tt, data_type, max_delt, bin_size)
%---
% Make data cells from data - for input to global optimization
%
% Input: tt -- array of time tags or bin counts
%
% max_delt -- maximum separation of times
% dt <= max_delt: in same cell
% dt > max_delt: in different cells
%
% data_type -- cell type: 1: midpoints (~Voronoi)
% 2: intervals (~Delaunay)
% 3: bins
%
% (dt = 0 corresponds to duplicate time tags)
%
% Output: cell_pops -- array of cell populations
%
% cell_sizes -- array of cell sizes
%
% NB: length of data_type 2 output is one smaller than of data_type 1
%
%--

if data_type == 3

% binned data

[aa, bb] = size(tt);
if aa > bb; tt = tt’; end
[bin_flag, num_data] = size(tt); % force row vectors

if bin_flag == 1
cell_pops = tt;
cell_sizes = bin_size * ones(size(tt));

elseif bin_flag == 2
cell_pops = tt(1,:); % bin populations
cell_sizes = tt(2,:); % bins sizes
disp(’2’)

else

6 APPENDIX A: MATLAB CODE 57

error(’Incorrect matrix dimensions in global_optimum.m ...’)
end

else

% TTE data; interpret bin_size as time quantum ("tick")

tt = fix(tt / bin_size);
cell_pops = ones(size(tt)); % Initial: one datum per cell

%---
% Find clumps of points closer together than max_delt
%---

ii_close = find(diff(tt) < max_delt);

while ~isempty(ii_close)

ii_start = ii_close(1); % Beginning of clump

%--
% Index of end of the clump:
% all ii_close-indices up to but not including
% ii_beyond are in clump
%--

ii_beyond = find(diff(ii_close) > 1);

if isempty(ii_beyond)
% All remaining close points are in the clump
ii_end = ii_start + length(ii_close);

else
ii_end = ii_start + ii_beyond(1);

end

ii_clump = ii_start:ii_end;

clump_pop = sum(cell_pops(ii_clump));
clump_tt = mean(tt(ii_clump));

% put memebers of the clump in one cell:
cell_pops(ii_start) = clump_pop;

tt(ii_start) = clump_tt;

% null the cells evacuated by this operation:
for ind = ii_end:-1:ii_start + 1

6 APPENDIX A: MATLAB CODE 58

cell_pops(ind) = [];
tt(ind) = [];

end

ii_close = find(diff(tt) < max_delt);

end

if data_type == 1

%-------------
% midpoints
%-------------

dt = diff(tt);
ndt = length(dt);

cell_sizes = 0.5 * (dt(1:ndt-1) + dt(2:ndt));

dt_left = dt(1);
dt_rite = dt(ndt);

cell_sizes = [dt_left cell_sizes dt_rite];

elseif data_type == 2

%-------------
% intervals
%-------------

cell_pops(length(cell_pops)) = []; % last datum can’t define cp!
cell_sizes = diff(tt);

end

end % if data_type

data_cells = [cell_sizes; cell_pops]’;

6 APPENDIX A: MATLAB CODE 59

6.3 Global Optimum

This function implements the dynamic programming procedure which is the heart of the seg-
mentation process. The input variable data_cells is an ordered array containing the sequential
data. In many cases it comprises two arrays (the sufficient statistics): the numbers of events
in (often 1) and the sizes of the data cells. The integer cost_id identifies which cost function
is to be used, as detailed in the comments for the function log_cost. The parameter lgam is
a real number, typically approximately 8, expressing prior information about the number of
changepoints likely to occur. Finally, the input parameter first is simply a flag to indicate
whether the routine should return when it first encounters a changepoint as it sweeps through
the data in sequence. If this trigger mode is not to be used, the parameter and relevant if

statement can be removed.
The main output is the array cpt giving the index values (in the input array data_cells)

at which the changepoints occur. The convention is that the values in cpt give the data cell
which starts a block, so that the previous block ends at this value minus 1. The arrays last

and best are of value only for debugging or diagnostic purposes. The index R is of use only in
the trigger mode, and indicates the segment of the input data array that was processed when
the (first, and in this case only) changepoint was detected.

For interactive operation with large data arrays, it is sometimes useful to insert an output
statement indicating progress within the R loop.

6 APPENDIX A: MATLAB CODE 60

function [cpt, last, best, R] = global_optimum(data_cells, cost_id, lgam, first)
%===
% Find the optimum partition of sequential data
%---
%
% Input: data_cells -- sequential data array, a N x M array:
% * column index: the N data cells (each row is one cell)
% * row index: the M parameters to compute the cost function
%
% cost_id -- indicates cost function (see log_cost.m)
%
% lgam -- log of parameter in geometric prior for number of changepoints
%
% first -- 0 --> normal "retrospective" mode; analyze all data
% >0 --> trigger mode; return at first sign of a change
%
%
%---
%
% Output: cpt -- array of change points (index values for input array)
%
% last -- working array of indices\
% |-- for diagnostic purposes only
% best -- working array of optima /
% R -- for the realtime mode, this is how much data was processed
%
%---

[num_cells, num_parameters] = size(data_cells);

best = []; % "best(R)" is the value of the optimum at iteration R
last = []; % "last(R)" is the index at which this optimum occurs

%--
% Start with the first datum (R=1);
% add the next one at each iteration
%--

for R = 1:num_cells

if R == 1
qq = data_cells(R:-1:1, :);

else
qq = cumsum(data_cells(R:-1:1, :));

end

6 APPENDIX A: MATLAB CODE 61

[best(R), last(R)] = max([0 best] + ...
reverse(log_cost(qq, lgam, cost_id)’));

if first > 0 & last(R) > first
% Trigger on first significant changepoint
cpt = last(R);
return

end

end

%------------------------------------
% Find the optimum partition
%------------------------------------

index = last(num_cells); cpt = [];

while index > 1

cpt = [index cpt];
index = last(index - 1);

end

6 APPENDIX A: MATLAB CODE 62

6.4 Load TTE Data

This routine reads the data from the BATSE files as posted at the data archive
at NASA’s High Energy Astrophysics Science Archive Research Center (HEASARC):
ftp://cossc.gsfc.nasa.gov/pub/data/batse/ascii_data/batse_tte/.

function [times, channels, detectors, trig_time] = load_ttedata(file_name)

% Open and read data from BATSE TTE files

[fid message] = fopen(file_name, ’r’);

if fid == -1

fprintf(1,[’Error opening file ’ file_name ’\n’]);return

else

fprintf(1,[’Successfully OPENED file ’ file_name ’\n’])

end

%--------------------------------------

% Read the File Headder (5 lines)

%--------------------------------------

format1 = ’%s’;

for ijk = 1:5

aa(ijk).line = fgetl(fid);

end

trig_time = aa(1).line;

trig_time = eval(trig_time(38: length(trig_time)));

npts = aa(2).line;

npts = eval(npts(9: length(npts)));

%--

% Now read the data: times, channels, detectors

%--

[times, count_times] = fscanf(fid,’%f’, npts);

[channels, count_channels] = fscanf(fid,’%f’, npts);

[detectors, count_detectors] = fscanf(fid,’%f’, inf);

fclose(fid); % close the file

6 APPENDIX A: MATLAB CODE 63

6.5 Logarithm of the Cost Function

This code segment computes any of the cost functions discussed above. To maintain the block
additivity of the cost function used by the optimization algorithm, the logarithm is computed.

function cost = log_cost(cell_data, ncp_prior, cost_type)

%---

% Log of cost function for various data types

%

% Input: cell_data -- MatLab structure containing these arrays:

% cell_sizes -- size of each cell

% cell_pops -- number of events in each cell

% ncp_prior -- complexity parameter (from prior on number of changepoints)

% cost_type -- 1 for TTE data; 2 for binned data, etc.

%

% Output: cost -- array of corresponding logarithmic cost function

%

%---

global lam_11 lam_22 p_11 p_22 log_lam

global alpha_0 beta_0

if cost_type == 1

cell_sizes = cell_data(:, 1);

cell_pops = cell_data(:, 2);

%-----------------------------

% TTE data

%-----------------------------

arg = cell_sizes - cell_pops + 1;

ii = find(arg > 0);

num_bad = length(cell_sizes) - length(ii);

if num_bad == 0

cost = gammaln(cell_pops + 1) + gammaln(arg) ...

- gammaln(cell_sizes + 2);

else

cost = eps * ones(size(cell_pops)); % eps is smallest number

cost(ii) = gammaln(cell_pops(ii) + 1) + gammaln(arg(ii)) ...

- gammaln(cell_sizes(ii) + 2);

6 APPENDIX A: MATLAB CODE 64

end

elseif cost_type == 2 % Binned data, infinite prior

cell_sizes = cell_data(:, 1); % (number of bins in the block)

cell_pops = cell_data(:, 2) + 1; % Note offset!

cost = gammaln(cell_pops) - cell_pops .* log(cell_sizes);

elseif cost_type == 3

% Normally distributed measurements

sum_x_2 = cell_data(: , 1); % sum(x.^2 / sig^2)

sum_x_1 = cell_data(: , 2); % sum(x / sig^2)

sum_x_0 = cell_data(: , 3); % sum[1 / sig^2)

cost = 0.5 * log(pi) ... % this can be absorbed into log_prior

- 0.5 * log(sum_x_0) ...

+ ((sum_x_1) .^ 2) ./ (4 * sum_x_0) ...

- sum_x_2;

elseif cost_type == 4 % Binned data, conjugate prior

cell_sizes = cell_data(:, 1); % (number of bins in the block)

cell_pops = cell_data(:, 2) + alpha_0; % Note offset!

cost = gammaln(cell_pops) - cell_pops .* log(cell_sizes + beta_0);

elseif cost_type == 5 % Binned data, finite prior

cell_sizes = cell_data(:, 1); % (number of bins in the block)

cell_pops = cell_data(:, 2) + 1; % Note offset!

term_2 = gammainc(lam_22 * cell_sizes , cell_pops);

term_1 = gammainc(lam_11 * cell_sizes , cell_pops);

cost = gammaln(cell_pops) + ...

log(term_2 - term_1) - cell_pops .* log(cell_sizes) ...

- log_lam;

elseif cost_type == 10

cell_sizes = cell_data(:, 1);

6 APPENDIX A: MATLAB CODE 65

cell_pops = cell_data(:, 2) + 1; % Note offset!

%---

% TTE data, multiple hits allowed, finite prior

%---

gam_term = gammainc(lam_22 * cell_sizes, cell_pops) - ...

gammainc(lam_11 * cell_sizes, cell_pops);

cost = log(gam_term) - cell_pops .* log(cell_sizes) - log_lam;

elseif cost_type == 11

cell_sizes = cell_data(:, 1);

cell_pops = cell_data(:, 2) + 1;

%-----------------------------

% TTE data; finite prior

%-----------------------------

arg = cell_sizes - cell_pops + 2; % NB 2, not 1

ig = find(arg > 0);

qq_21 = eps * ones(size(arg));

qq_21(ig) = betainc(p_22, cell_pops(ig), arg(ig)) - ...

betainc(p_11, cell_pops(ig), arg(ig));

ii_bad = find(qq_21 == 0);

qq_21(ii_bad) = eps*ones(size(ii_bad)); % overflow

term_1 = eps * ones(size(arg));

term_1(ig) = betaln(cell_pops(ig), arg(ig));

cost = term_1 + log(qq_21) - log_lam;

elseif cost_type == 12

%-------------------------------

% TTE data; max likelihood

% instead of marginalization

%-------------------------------

small = eps; % 2.2e-16

cell_sizes = cell_data(:, 1);

cell_pops = cell_data(:, 2);

prob = cell_pops ./ cell_sizes;

6 APPENDIX A: MATLAB CODE 66

cost = cell_pops .* log(prob + small) ...

+ (cell_sizes - cell_pops) .* log(1 - prob + small);

elseif cost_type == 13

%---

% Maximum Likelihood

% Any Poisson data: duplicate tags ok

%-------------------------------

small = eps; % smallest number

cell_sizes = cell_data(:, 1);

cell_pops = cell_data(:, 2);

cost = cell_pops .* ...

(log(cell_pops + eps) - log(cell_sizes) - 1);

end

cost = cost - ncp_prior; % prior on number of changepoints

6.6 Plot partitions

6.7 Plot TTE partitions

6.8 Reverse (from WaveLab)

function r = reverse(x)
% reverse -- Reverse order of elements in 1-d signal
% Usage
% r = reverse(x)
% Inputs
% x 1-d signal
% Outputs
% r 1-d time-reversed signal
%
% See Also
% flipud, fliplr
%

r = x(length(x):-1:1);

%
% Copyright (c) 1993. David L. Donoho
%

6 APPENDIX A: MATLAB CODE 67

%
% Part of WaveLab Version .701
% Built Tuesday, January 30, 1996 8:25:59 PM
% This is Copyrighted Material
% For Copying permissions see COPYING.m
% Comments? e-mail wavelab@playfair.stanford.edu
%

7 BIBLIOGRAPHY 68

7 Bibliography

References

[Arias-Castro, Donoho and Huo 2003] Arias-Castro, E., , Donoho, D., and Huo, X. 2003, ’Near-
Optimal Detection of Geometric Objects by Fast Multiscale Methods,” preprint.

[Band 2002] Band, D. (2002), “A Gamma-Ray Burst Trigger Toolkit,” Astrophys.J., 578, 806-811
(arxiv.org/abs/astro-ph/0205548)

[Bretthorst 1988] Bretthorst, G. Larry (1988), Bayesian Spectrum Analysis and Parameter Estima-
tion, Lecture Notes in Statistics, Springer-Verlag. http://bayes.wustl.edu/

[Coram 2002] Coram, Marc, (2002), personal communication and Ph. D. thesis, Nonparametric
Bayesian Classification, www-stat.stanford.edu/~mcoram/

[Donoho 1994] Donoho, D.L., (1994), Smooth Wavelet Decompositions with Blocky Coefficient Ker-
nels, in Recent Advances in Wavelet Analysis, L Schumaker and G. Webb, eds., Academic Press,
pp. 259-308.

[Fenimore et al. 2001] Fenimore, E., Palmer, D., Galassi, M., Tavenner, T., Barthelmy, S., Gehrels,
N., Parsons, A., Tueller, J. (2001), “The Trigger Algorithm for the Burst Alert Telescope on
Swift,” in Gamma-Ray Burst and Afterglow Astronomy 2001, Ricker and Vanderspek (eds), AIP,
662, 491, astro-ph/0408514

[Gelman] Book by Gelman.

[Hubert, Arabie, and Meulman 2001] Hubert, L., Arabie, P., and Meulman, J., 2001, Combinatorial
Data Analysis: Optimization by Dynamic Programming, SIAM: Philadelphia

[Howell 2005] http://www.uvm.edu/~dhowell/StatPages/More_Stuff/OldFaithful.html

[Knuth 2005] Preprint.

[Kolaczyk 1996] Kolaczyk, Eric D., (1996), “Estimation of Intensities of Inhomogeneous Poisson Pro-
cesses Using Haar Wavelets,” Technical Report 436, Department of Statistics, The University of
Chicago, Chicago, to be submitted to Journal of the Royal Statistical Society, Series B..

[Kolaczyk 1999] Kolaczyk, E.D. (1999). Bayesian Multi-Scale Models for Poisson Processes. Journal
of the American Statistical Association, 94, 920-933.

[Kolaczyk 2000] Kolaczyk, E.D. and Dixon, D.D. (2000). Nonparametric estimation of intensity maps
using Haar wavelets and Poisson noise characteristics. The Astrophysical Journal, 534:1, 490-505.

[Kolaczyk 1998] Kolaczyk, E.D. (1998) Wavelet Shrinkage Estimation of Certain Poisson Intensity
Signals Using Corrected Thresholds. Statistica Sinica, 9, 119-135.

[Kolaczyk 1998] Kolaczyk, E.D. (1997) Non-Parametric Estimation of Gamma-Ray Burst Intensities
Using Haar Wavelets. The Astrophysical Journal, Vol. 483, 340-349.

REFERENCES 69

[Kolaczyk and Nowak 2002] Kolaczyk, Eric D. and Nowak, Robert D., (2002), “Multiscale Statistical
Models,” Penn State Statistical Challenges 3

[Kolaczyk and Nowak 2002] Kolaczyk, Eric D. and Nowak, Robert D., (2002), “A Multiresolution
Analysis for Likelihoods: Theory and Methods,” preprint

[McLean et al. 2003] McLean, K., Fenimore, E., Palmer, D., Barthelmy, S., Gehrels, N., Krimm, H.,
Markwardt, C., and Parsons, A. (2003), “Setting the Triggering Threshold on Swift, in proceed-
ings of the Gamma-Ray Bursts: 30 Years of Discovery conferance in Sante Fe NM, Fenimore and
Galassi (eds), AIP, astro-ph/0408512

[Nowak and Figueiredo 2002] Nowak, Robert D., and Figueiredo, Mario A. T., “Unsupervised Pro-
gressive Parsing of Poisson Fields Using Minimum Description Length Criteria,” preprint

[Nowak and Figueiredo 2002] Nowak, Robert D., and Figueiredo, Mario A. T. (2002), “Unsupervised
Segmentation of Poisson Data,” preprint

[Okabe, Boots, Sugihara and Chiu 2000] Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. (2000),
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley and Sons,
Ltd., New York, Second Edition

[Ò Ruanaidh and Fitzgerald 1996] Ò Ruanaidh, J. J. & Fitzgerald, W. J., 1996, Numerical Bayesian
Methods Applied to Signal Processing, Springer: New York.

[Papoulis 1965] Papoulis, A, 1965, Probability, Random Variables, and Stochastic Processes, McGraw-
Hill: New York.

[Prahl 1996] Prahl, J., “A fast unbinned test on event clustering in Poisson processes,” astro-
ph/9909399.

[Scargle 1981] Scargle, J. (1981), Studies in astronomical time series analysis. I: Modeling random
processes in the time domain. Ap. J. Supp., 45, 1-71.

[Scargle 1998] Scargle, J., 1998, “Studies in Astronomical Time Series Analysis. V. Bayesian Blocks,
A New Method to Analyze Structure in Photon Counting Data”, Astrophysical Journal, 504, p.
405-418, Paper V. http://xxx.lanl.gov/abs/astro-ph/9711233

[Scargle 2001a] Scargle, J. D., (2001), Bayesian Blocks: Divide and Conquer, MCMC, and Cell Co-
alescence Approaches, in Bayesian Inference and Maximum Entropy Methods in Science and
Engineering, 19th International Workshop, Boise, Idaho, 2-5 August, 1999. Eds. Josh Rychert,
Gary Erickson and Ray Smith, AIP Conference Proceedings, Vol. 567, p. 245-256.

[Scargle 2001b] Scargle, J. D., (2001a), “Bayesian Estimation of Time Series Lags and Structure,”
Contribution to Workshop on Bayesian Inference and Maximum Entropy Methods in
Science and Engineering (MAXENT 2001), held at Johns Hopkins University, Baltimore,
MD USA on August 4-9, 2001.

[Scargle 2001c] Scargle, J. D., (2001), “Bayesian Blocks in Two or More Dimensions: Image Seg-
mentation and Cluster Analysis,” Contribution to Workshop on Bayesian Inference and
Maximum Entropy Methods in Science and Engineering (MAXENT 2001), held at
Johns Hopkins University, Baltimore, MD USA on August 4-9, 2001.

REFERENCES 70

[Scargle and Babu 2002] Scargle, J. D., and Babu, G. J. (2002), “Point Processes in Astronomy:
Exciting Events in the Universe,” Chapter 20 of Handbook of Statistics: Stochastic Processes:
Modeling and Simulation, 2002, Elsevier Science.

[Scott 1992] Scott, D. W. (1992), Multivariate Density Estimation, John Wiley & Sons, Inc.: New
York

[Schmidt 1999] Schmidt, M. (1999), “Derivation of a Sample of Gamma-Ray Bursts from BATSE
DISCLA Data,” in Proc. of the 5th Huntsville Gamma Ray Burst Symposium, Oct. 1999, ed.
R.M. Kippen, AIP astro-ph/0001122

[Silverman 1999] Silverman, B. W. (1999), Density Estimation for Statistics and Data Analysis, Chap-
man & Hall/CRC: New York

[BATSE www site] ftp://cossc.gsfc.nasa.gov/compton/data/batse/ascii_data/64ms/trig00000/cat64ms.00105

[Weisberg 1980] Weisberg, S. (1980), Applied Linear Regression, John Wiley & Sons, Inc.: New York

REFERENCES 71

Figure 10: Histogram estimation of Old Faithful eruption durations. The black bars are an
equal width, fixed-bin histogram similar to those in [Silverman 1999]. The blue dashed line
shows the adaptively binned histogram determined with the methods described in this paper,
with the maximum likelihood fitness function. The blue dotted lines depict the rates where
the probability in the Poisson distribution drops to 0.05 times that at the peak of the Poisson
distribution with parameter equal the its maximum likelihood value. The solid red line is the
mean of 1000 bootstrap samples, and the cyan shaded regions delineate 1, 2, and 3 time the
bootstrap variance about the mean. Upper panel: 107 values from Table 2.2 of [Silverman 1999].
Lower panel: augmented sample of 230 points [Howell 2005].

REFERENCES 72

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

A
/A

0:
 0

.2

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

A
/A

0:

 1

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

A
/A

0:

 2

Figure 11: One hundred normally distributed measurements – zero-mean (circles) except for
points 25-75 (squares), where the means are 0.2, 1.0 and 2.0 in units of the Arias-Castro et al.
threshold

√
2 logN . The dashed lines indicate the true changepoints and block amplitudes,

and the solid lines are the Bayesian block representations.

REFERENCES 73

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 A / [2 sqrt(log N)]

E
rr

or
s

−−
 S

ol
id

: R
M

S
 D

as
h:

 c
ha

ng
ep

oi
nt

x: N=100 o: N = 1000

Figure 12: Relative error in finding a single block. Abscissa: True block amplitude in units
of Arias-Castro et al.’s threshold amplitude. Ordinate: Error measures described in the text.

REFERENCES 74

2 4 6 8 10 12 14 16 18 20
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

 N: 1000 (1000)
 N: 1500 (1000)
 N: 2000 (1000)
 N: 4000 (1000)
 N: 6000 (1000)

 N: 100 (100000)
 N: 200 (100000)

 N: 80 (1000000)

ln γ

F
al

se
 A

la
rm

s
p

er
 p

h
o

to
n

Figure 13: False alarm rates per photon vs. ln γ. The number of photons per interval, N , and
in parentheses the number of averaged simulations, are indicated next to the line-style legend.
A linear fit for the false alarm rate is ∼ 0.085 γ−0.86±0.08 triggers per photon.

