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ABSTRACT

This paper develops techniques to evaluate the discrete Fourier transform (DFT), the autocorrelation func-
tion (ACF), and the cross-correlation function (CCF) of time series which are not evenly sampled. The series
may consist of quantized point data (e.g., yes/no processes such as photon arrival). The DFT, which can be
inverted to recover the original data and the sampling, is used to compute correlation functions by means of a
procedure which is effectively, but not explicitly, an interpolation. The CCF can be computed for two time
series not even sampled at the same set of times. Techniques for removing the distortion of the correlation
functions caused by the sampling, determining the value of a constant component to the data, and treating
unequally weighted data are also discussed. FORTRAN code for the Fourier transform algorithm and numerical

examples of the techniques are given.

Subject headings: analytical methods — BL Lacertae objects — numerical methods

L. THE PARADOX OF CORRELATION FUNCTIONS WITH UNEVENLY
SAMPLED DATA

Correlation functions are useful time series analysis tools.
They yield physical information such as the time scale of a
process or the time delay between two related processes. But
astronomical time series data are often unequally spaced in
time, due to a variety of practical considerations. (The times
may be irregular, or they be evenly spaced but with missing
observations—“gaps.”) Such unevenness produces a funda-
mental difficulty in the estimation of correlation functions, the
resolution of which is the main point of this paper.

For data X, = X(t,) sampled at evenly spaced times ¢, =
(n—1DAt,n=1,2,..., N the traditional estimator of the auto-
correlation function is

N—k

px(k) = (1/N) ZIXan+k . (L1)
This expression makes sense only if the sample times ¢, are
evenly spaced, since it can be thought of as a kind of vector dot
product of X with X shifted in time by k. The times of the
shifted data must match up with those of the unshifted data.
Therefore the sampling interval must be constant and the lag k
must be an integer multiple of this interval.

How should one estimate the ACF of unevenly sampled
data? Possible approaches are to interpolate the data to even
spacing and use equation (L1), or to sum product-pairs
X(2)X(t;) in bins of the lag t; — t; (Mayo, Shay, and Riter 1974;
Edelson and Krolik 1988). Gastner and Roberts (1975, 1977)
circumvent the fact that the interval (t,, t,,,) is not a definite
length of time, noting that statistically it does correspond to a
fixed time interval—namely, k divided by the mean sampling
rate. While these procedures may be satisfactory in some appli-
cations, they all produce some distortion and loss of informa-
tion.

The goal of this work is a correlation function estimator
which uses all of the information contained in unevenly spaced
data. The proposed approach steps briefly into the frequency
domain (computing the power spectrum) and returns to the
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time domain (computing the autocorrelation function with the
Autocorrelation Theorem). While it does not explicitly inter-
polate, it can be thought of as effecting an implicit inter-
polation in the time domain. The basic tool of the
computations is the discrete Fourier transform (§ II), which
yields the power spectrum used in the computation of the auto-
correlation function (§ III) and the cross-spectrum used to
compute the cross-correlation function (§ IV). Examples using
artificial data appear in all three of these sections. Section V
exhibits correlation functions for some actual data on BL
Lacertae—the prototype of a class of violently variable radio
sources. The FORTRAN code for computing the discrete
Fourier transform is given in Appendix A. Appendix B dis-
cusses the frequencies used in the inverse transformation. The
remaining appendices treat an underlying constant component
to the data, and unequally weighted data.

II. DISCRETE FOURIER TRANSFORM

This section presents an algorithm for the discrete Fourier
transform (DFT) of unevenly sampled data. Later this trans-
form will be used to estimate correlation functions, but it is of
interest in its own right and in connection with power spectra.

Scargle (1982, hereafter Paper II) modified the classical defi-
nition of the DFT in order that the resulting power spectrum
(or periodogram) of unevenly sampled data have the simple
statistical behavior which obtains in the case of even sampling
(Paper II, Appendix A), while maintaining time translation
invariance (Paper II, Appendix B). In addition, spectral
analysis using this estimator is equivalent to least-squares
fitting of sine waves to the data (Paper II, Appendix C). Paper
IT dealt with power spectra, so the phase of the Fourier trans-
form was unimportant; the present work differs slightly in cor-
rectly treating the complex phase of the transform.

Press and Teukolsky (1988) give an informative discussion of
the beneficial properties of this periodogram, as well as a
FORTRAN algorithm that uses a recurrence technique to gain a
factor of 3 in speed. Further improvement is obtained with
Press and Rybicki’s (1989) clever N log N algorithm.
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Appendix A of Paper II contains a minor error: the deriva-
tion given for equation (A9) tacitly assumes that C and S,
defined in equations (A3) and (A6), respectively, are uncor-
related, which in general is not true. However, condition (C5)
assures that they are uncorrelated, and therefore all of the
results of Paper II are unaffected. I am grateful to Donald
Percival for calling this point to my attention.

a) Estimator

Define the Fourier transform of {X(t,),n=1,2,...., N} to
be

FTy(w) = F, Y, (AX, cos ot, + iBX, sin wt;), (IL1)
where
Fo() = (N/2)? exp (—iot,) , 112)
A@) = (3 cos? wt) 12 ; Bw) = (Y sin® o)~ V?, (IL3)
t,=t,— (w), (IL.4)
and
() = (1/2w) tan~* (}_ sin 2wt/ cos 2wt,) .  (IL5)

The only difference from the definition given in Appendix A of
Paper II is the phase factor exp (—iwt,) in equation (IL.2).
Without this factor FT,(w) would be invariant under the
transformation t, —t, + T, since t, — 7 is invariant as dis-
cussed in Appendix B of Paper II. But the Fourier transform
should experience a (complex) phase shift of exp (—iwT;)
under such a time translation. The choice of ¢, is somewhat
arbitrary, but corresponds to a specification of the location of
the fiducial origin of time. Other choices (such as the average of
the times) are possible, but correspond to nonstandard loca-
tions of the origin. Inspection of equations (I.1)«IL.5) shows
that the order of the t,’s is irrelevant in the definition of
FTy(w).

b) Computing the DFT

The following problems arise in the computation of the DFT
with the above formulae. (i) Expression (IL.5) for t and the
imaginary part of equation (IL.1) are undefined for w = 0. (ii)
The imaginary part of (IL.1) is undefined at the Nyquist fre-
quency for the case of even sampling. (iii) Equations (I1.3) and
(IL.5) have ambiguities, due to (a) the sign ambiguity of the
square root; (b) the multi-valued nature of the arctangent. (iv)
For larger w the arguments of the functions sin, cos, and exp
are larger than standard computer routines can handle.

These difficulties are treated as follows:

Problem (i).—All terms at zero frequency are evaluated using
the well defined limits as w — 0, namely ©(0) = (3, ¢,)/N, and
FT(©0) =} X,)/N'>

Problem (ii).—This problem can be ignored if the spacing of
the time points will always be uneven. Otherwise it is probably
best to branch to an FFT routine if the spacing passes a test for
evenness. Nevertheless, it is of some interest to construct an
algorithm valid no matter what the spacing. An 0/0 ambiguity
in the imaginary part of (Il.1) can be removed using
L’Hopital’s rule—differentiating the numerator (from eq.
[IL.1], omitting B) and the denominator (1/B in eq. [I1.3]) with
respect to w. The resulting denominator goes to infinity (giving
zero for the imaginary part of FT), unless the crossproduct
expression (called “ CROSS ” in the code) vanishes. See Appen-
dix A for the details of the implementation of this procedure,
which was tested on evenly spaced data (see Fig. le).

Problem (iii).—These ambiguities can be resolved by starting
from the values at w = 0, computed as indicated in (i), and
imposing continuity on the DFT as a function of w. However,
it turns out that ambiguity (b) produces just a sign error in the
terms in (IL.1). The result is a sort of cancellation of (a) and (b).
Numerical studies have verified that, in at least the cases inves-
tigated, simply ignoring the ambiguities gives the same results
as does imposing continuity.

Problem (iv)—The arguments are evaluated modulo an
integer multiple of 27.

No other numerical problems were uncovered in the present
studies, but there may be kinds of data which cause difficulties.
The reader is advised to use caution, especially in cases of
unusual sampling. The above comments regarding (iii) are
made with some caution. There may be some kinds of data for
which this result is not true. I recommend checking the validity
of the transform by comparing the original data with the
inverse transform (see § Ilc). If this gives unsatisfactory results,
one should evaluate the transform at a more finely spaced grid
of frequencies; any abrupt sign reversals of the terms of equa-
tion (I1.1) would indicate that the ambiguities were not correct-
ly resolved.

Appendix A presents FORTRAN code that computes the DFT
for arbitrary sampling.

¢) Inverting the DFT

Inversion back to the time domain can be accomplished
using standard techniques, the FFT in particular, by evalu-
ating the DFT at the usual evenly spaced frequencies. Appen-
dix B discusses some details of this inversion. The three points
which are different from what might be expected are (1) the
fundamental frequency is calculated using a period slightly
larger than the range which the samples span, (2) the funda-
mental frequency is further reduced by a factor of 2, in order to
eliminate wraparound, and (3) the maximum or Nyquist fre-
quency is to be regarded as a smoothing parameter which can
be adjusted depending on the use that will be made of the
transform.

d) Example Computations

Figure 1 compares a specific randomly sampled time series
with the inversion of its Fourier transform. The sampling was
Poisson: the points were randomly placed on the time axis
over the interval (0, 1) with a uniform probability distribution.
(This corresponds to a Poisson distribution for the intervals
between adjacent points.) The value of X at each of these
random samples was also random, uniformly distributed from
0 to 1. The sample mean was removed from X prior to analysis.
The raw data for a particular realization of this process are
shown as triangular symbols in the various panels of this
figure, each of which illustrates a particular feature of the pro-
cedure.

Figure la shows a set of 16 such randomly sampled random
data points, analyzed using the techniques described above.
The only free parameter is w,,,,, the maximum frequency out
to which the transform is evaluated in computing the inverse.
This plot shows the results for the standard choice for this
smoothing parameter, ie., = divided by the mean sampling
interval. As can be seen in the figure, this choice roughly corre-
sponds to no smoothing of the data. The resulting inverse DFT
(which, of course, is real) is plotted as a solid line and is reason-
ably close to the data points.

The inversion is not exact because some of the information
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' Fi1G. 1.—Random data (symbols) sampled at random times, compared to
4 the inverse of the DFT (lines) as follows: (a) standard choice for o, ; (b) 0., 4
times larger; (¢) @,,.x 2 times smaller; (d) Same as (a), except that one point has
been moved to have essentially the same ordinate as another point (dotted line,
original data; solid line, data with altered point); (¢) Same as (a) but the sample
times are evenly spaced.
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in the original data at high frequencies (corresponding to the
sample times which are closer together than average) is not
used. The period of the inversion is twice as long as the sam-
pling range due to the wrap-around removal procedure, equa-
tion (B9). The “unsampled data” in the interval (1, 2) is, to a
fair approximation, represented by the mean value (zero, in
this case).

Figure 1b shows what happens if w,,,, is chosen to be rela-
tively high: the inverse tends to zero between the samples,
approaching a series of J functions. Note that the locations of
the d-functions reproduce the sample times, a feature that may
be of use in some applications.

Figure 1¢ shows the smoothing effect if w,,, is smaller than
the standard value. As expected for such purely random data,
this smoothing degrades the quality of the fit to the data, but in
many applications it can be useful.

Figure 1d shows an interesting result: our DFT treats data
points which are sufficiently close together in time as a single
point with amplitude equal to the sum of the individual ampli-
tudes. One of the data points analyzed in Figure 1a was moved
to essentially the same time as another point (as indicated by
the arrow in the figure). The two inversions are similar in
regions away from the moved point, but near it the amplitude
of the inversion is approximately the sum of the two cotempo-
ral data values.

Figure le shows that the algorithm works for the singular
case of evenly spaced data. The algorithm in Appendix A con-
tains special coding for this case. If one is sure that the data
spacing will never be even, then this coding can be dispensed
with.

III. AUTOCORRELATION FUNCTION

The autocorrelation function (ACF) is a measure of how
closely a quantity observed at a given time is related to the
same quantity at another time. It measures the degree of
resemblance of the signal with itself as time passes, to use signal
processing terminology. The ACF can also be viewed as a
measure of the predictability of a process or signal, based on
past data. Prediction of a process at time ¢ into the future is
good as long as the value of the correlation function at “lag” ¢
is large. As soon as the correlation function becomes small the
similarity of the signal to its previous history disappears, and
the signal becomes unpredictable.

a) Definition
The autocovariance of a zero-mean random process X is
defined as the expectation of the product of the values of X
observed at times separated by the lag ¢:

px(t) = <X@)X( + 1))

where (...) is the ensemble average (over realizations of X).
The autocorrelation function (ACF) is defined as the auto-
covariance normalized to unity at ¢ = 0. The ACF of a station-
ary ergodic process can be computed as an average over t’, and
depends on only the difference between the two times, i.e., the
lagt.

The traditional estimator of p4(t), given a finite set of evenly
spaced observations, {X(z,), n =1, 2, ..., N}, is (e.g., Jenkins
and Watts 1968 ; Box and Jenkins 1970):

(IIL1)

px(k) = (1/N) ; [X(t,) — X1[X(ty+) — X1 . (I12)
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It is often emphasized that the sample mean X = (1/N) ) X,
must be subtracted as indicated here, but Appendix C shows
that this is not always desirable.

The use of the factor 1/N in this equation, instead of the
correct 1/(N — k) (to make equation [III.2] an average of
N — k terms) is a curiosity. Apparently the incorrect factor is
used because it yields an estimator with a smaller variance (e.g.,
Jenkins and Watts 1968; Box and Jenkins 1970). In practice, it
is argued, we are interested primarily in lags k < N anyway,
and the reduced variance of equation (II1.2) is worth the small
error (bias) which results. [The estimator is on the average too
small by the factor N/(N — k), which becomes significant only
at large lags k ~ N.] This reduction in variance simply by
making p smaller seems arbitrary, and in addition the presence
of a bias can be devastating in many applications. On the other
hand, the use of 1/N assures that the autocorrelation is
“nonnnegative definite” (Brockwell and Davis 1987, § 1.5).
The discussion below in § IIId sheds more light on the role of
this factor.

b) Estimator

The Autocorrelation Theorem (Papoulis 1962; Bracewell
1965) states that the power spectrum of a stationary random
process is the Fourier transform of its autocorrelation function.
Therefore the ACF can be estimated by computing the inverse
Fourier transform of the square of the complex absolute value of
the Fourier transform, since the latter is an estimate of the
power spectrum. The cornerstone of this paper is the imple-
mentation of this relationship for unevenly spaced data.

Specifically, the discrete Fourier transform FT y(w) is calcu-
lated as in the previous section, the power spectrum obtained
from

Py(w) = | FTx(0)|? (I1L.3)
as in Paper II, and the ACF estimated with
px(t) = F ~'[Py(o)] , (IIL4)

where & ~ ! is the inverse Fourier transform (see Appendix B).

¢) Removing the Sampling Distortion

The ACF estimate in equation (IIL.4) is altered by the sam-
pling, in a way that enhances one problem and diminishes
another. Leakage of power to nearby frequencies (“ sidelobes ™)
is enhanced by uneven sampling, while aliasing (the leakage of
high-frequency power to low frequencies) is diminished.

There is a simple way to partially remove the effects of sam-
pling from the ACF. Scott (1976) proved that the ACF of the
observed process, px(t), and the true (theoretical) ACF p%“(t),
are related by

px(t) = px"(@)ps(t) - (ITL5)

where pg(t) is the ACF of the sampling, considered as a random
process. Equation (IIL5) is the time domain analog of the fre-
quency space convolution relation: observed quantity = true
quantity * window function.

Scott does not provide a practical method for estimating pg.
I propose to estimate the transform of the sampling by setting
X; = linequation (IL1), yielding

FTs(w) = Fo Y. [A4 cos wt, + iB sin wt,] (I1L.6)
and then by analogy with equation (II1.4)
pst) = F [ FTs(@)|*] . (I1L.7)
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F1G. 2—Autocorrelation for an artificial shot noise process (symbols and dashed line) compared with the theoretical ACF (solid line)

As noted in Appendix D of Paper II, functions defined in this
way are not authentic “window functions”; i.e., we have not
proved that equation (IIL5) holds with this definition of p4(t).
However the numerical experiments reported below show that
the following estimate for the ACF removes at least some of
the sampling distortions:

Px"(0) = px(t)/ ps(t) - (ITL8)

There are obviously problems when pg(t) vanishes or is small,
but often this does not happen for the lags of interest. Typically
ps is significantly greater than zero until ¢ becomes relatively
large.

d) Example: A Shot Noise Process

This section demonstrates the technique using artificial data
from a moving average, or generalized shot noise, process
(Appendix C and Scargle 1981, hereafter Paper I) in the form

X(t) = C(t) » R(t) + N(v) , (I11.9)
with a pulse shape given by
_ J+exp (—t/a)t = 0)
C@) = {—exp (+t/a)t < 0)° (ITL.10)

The additive noise N(t) represents observational errors. This
pulse shape has a discontinuity at t = 0, but since it has zero
area the problems discussed in Appendix C are avoided. The
random variable R(t) was taken to be a Poisson process, con-
sisting of randomly occurring pulses all with the same ampli-
tude.

Figure 2 compares the estimated ACF with the exact auto-
correlation [easily shown to be (1 — t/a) exp (—t/a)]. The
agreement is good, although there is considerable scatter in the
points for the estimate. By sampling the same process evenly it
can be shown that this scatter is not due to the unevenness of
the sampling, but to the finiteness of the realization and of the
number of pulses sampled.

The sampling correction in Figure 2 is small, as expected
because the sampling is moderately uniform. In fact, the effect
of the correction is mainly to amplify the uncertainty in the
estimated autocorrelation, because it amounts to dividing by a
small number at relatively large lags. Indeed, whether or not
one applies the sampling correction factor is—on the average—
equivalent to whether one uses 1/(N — k) or 1/N as the normal-
ization factor in the definition of the ACF, as discussed in § IIIa.

IV. CROSS-CORRELATION FUNCTION (CCF)

The cross-correlation function measures how closely two
different observables are related to each other at the same or
differing times. It also measures how well one process can be
predicted based on observations of the other. Note that since
we don’t know which is the cause and which is the effect, this
“predictability ” can refer to either earlier or later times.

a) Definition
The cross-correlation function of two variables X(t) and Y()
is

Pxy(t) = KXY (' + 1)) (Iv.1)
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1 1 1 | Il
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FiG. 3.—Cross-correlation for an artificial shot noise process, both with (solid line) and without (dashed line) sampling correction, compared to the theoretical
cross-correlation function (symbols and solid line). The dotted line is the sampling correction.

1.0

.8 1 ]
.20 .25 .30 . .35

FiG. 4—Cross-correlation for artificial point data, from a simulation of the Multichannel Astrometric Photometer: unsmoothed (symbols and dotted line) and
with various degrees of smoothing.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1989ApJ...343..874S&db_key=AST

J. 11343 87450

A0

I'I_

880 SCARGLE

(Jenkins and Watts 1968); X and Y are assumed to have zero
mean. As with the ACF, the structure of the classical estimator

pxr(k) = (1/N) 3 X(t)Y (ts+0) (Iv.2)

demands that the samples of X and Y be evenly spaced and
identical, and that the lag be an integer multiple of the sam-
pling interval (see § I). We again temporarily go to the fre-
quency domain and use the relation that the cross-correlation
function is the inverse Fourier transform of the cross-spectrum
(Jenkins and Watts 1968, § 8.3.2).

b) Estimator
Specifically, the cross-spectrum is defined as

Pyy(@) = FTx()FTy(w) , (Iv.3)
and the cross-correlation function is then
pxy(t) = F " [Pxy(w)] . (Iv.4

(Appendix B discusses the frequencies to use in this inversion.)
The CCF is readily evaluated for any samplings of X and Y.
They need not be evenly spaced. They need not be the same.
The sampling of X and Y need not even overlap! The CCF is
determined only for lags which shift the two sample intervals
so that they overlap significantly. For other lags the formula
give garbage.

It is well known that observational errors produce a spike in
the ACF at zero lag. Similarly correlated errors in X and Y
produce a zero-lag spike in the CCF. It may be difficult to
distinguish this artifact from a “real” effect; namely, simulat-
neous rapid variations in X and Y.

Much of the discussion for the ACF on sampling distortion,
constant components, and weighted data (§III and the
Appendices) applies here and will not be repeated.

¢) Example: Two Correlated Shot Noise Processes
The next example consists of two moving average processes,

X(t) = C(t) * Rx(t) + Ny(2), (Iv.5)
Y(t) = C(t) * Ry(t) + Ny(2), (1v.6)

related because we let the pulse amplitudes of one be the same
as for the other, but delayed in time by a constant amount:

Ry(t) = Ry(t — to) . Iv.7)

Both X and Y have the same two-sided exponential pulse
shape (equation [II1.10]) used in the previous example. The
noise processes Ny and N, are assumed to be independent of
each other.

Figure 3 compares the cross-correlation function computed
for a realization of this process with the exact theoretical func-
tion. As in Figure 2, there is considerable scatter caused by the
finiteness of the sample—and not by the unevenness of the
sampling.

d) Example: Cross-Correlations of Point Data

Sometimes the process being sampled is a yes/no signal, such
as the arrival of photons in a detector. The data then consist of

Fi6. 5—Computations based on the Algonquin Radio Observatory data
on BL Lacertae (Medd et al. 1972; Andrew et al. 1978): (a) The autocorrelation
function of the 2.8 cm data both with (solid line) and without (dotted line)
sampling correction (dashed line, sampling correction); (b) Same as (a), for the
4.5 cm data; (c) The cross-correlation function, 2.8 cm data vs. 4.5 cm data,
including correction for sampling; (d) expanded view of the zero-lag region of
the cross-correlation function with (dashed line) and without sampling correc-
tion (solid line).
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a sequence of times, {t,; n=1, 2,..., N}. This situation is
handled by considering the processes to be a sequence of
S-functions located at the times ¢;; i.e, X(t) =), 8(t —t;) and
similarly for Y. Thus to evaluate the Fourier transform replace
X, and Y, by unity, yielding an expression identical to equation
(IIL.6).

For example, consider the determination of the relative posi-
tions of star images in a telescope. Assume we have a detector
which records one rectangular coordinate of each photon, so
the data are the values {X,; n=1, 2, ..., N}. (Warning: We
have just switched notation and are now using X for the inde-
pendent variable which was t previously.) Assume that a
second star yields data values {Y,,; m = 1,2, ..., M}. One way
to estimate the separation between the two images is to find the
lag at which the cross-correlation function of the data arrays is
maximum.

Figure 4 demonstrates the computation a cross-correlation
function of point data. These data are not quite the coordinate
values. We have here simulated data produced by the Multi-
channel Astrometric Photometer (Gatewood 1987). In this
astrometric measuring device a series of slits (comprising a
Ronchi grating) is swept past the star images, causing the light
from each star to be modulated in the form of an approx-
imately sinusoidal light curve. The positional difference
between two star images is thus converted to a phase difference
between two modulated light curves. The lag at which the peak
in the cross-correlation function of the light curves occurs is an
estimate of this phase difference. If the detector used is a “ time-
tagging” one, such as the Multi-Anode Microchannel Array
(MAMA; Timothy 1983), the data for each star consist of a set
of times at which the photons were detected.

Figure 4 shows is the cross-correlation function of two such
data streams, without any binning of the data on the time axis.
The symbols represent the unsmoothed correlation function,
and the sequence of curves represent successively increased

FOURIER TRANSFORMS AND CORRELATION FUNCTIONS 881

amounts of smoothing. It is seen that the cross-correlation
function is well determined, and in turn determines the relative
phase of the two light curves well.

V. EPILOGUE: BL LACERTAE

This paper has described a technique for computing the dis-
crete Fourier transform of unevenly spaced time series data.
The procedure is applicable to frequency domain analysis, but
the major use I contemplate is the computation of time-
domain functions such as the auto- and cross-correlation func-
tions.

I close with an example of such application to real data,
namely, the Algonquin Radio Observatory data on the varia-
tion of the centimeter flux from the highly variable radio
source BL Lacertae (Medd et al. 1972; Andrew et al. 1978). It is
clear that there is a stochastic character to the variation, and
therefore the random time-domain models described in Paper
I, or the chaos models described in (Scargle 1989, [Paper IV]),
may be appropriate.

Figure 5a and 5b show the ACFs of the time series data for
the two wavelengths of the Algonquin observations, and
Figure S5c shows the CCF of the same data. The CCF is of
interest since the expanding plasma cloud model for radio
source variability predicts that the activity at longer wave-
lengths will be delayed, because of radiative transfer effects,
compared to that at shorter wavelengths. A future paper on BL
Lacertae will describe the results of this kind of analysis.

I am grateful to Gary Villere for material incorporated into
Appendix B; to Bob Hogan carrying out computations that
were used in the example of § IV for point data; to Kent
Cullers, William Borucki, and the anonymous referee for useful
suggestions; to Donald Percival for pointing out an error in
Paper II; and to Phyllis Scargle for stimulating discussions.

APPENDIX A

FORTRAN CODE: THE DISCRETE FOURIER TRANSFORM

This appendix presents source code for a subroutine to compute the Fourier transform of data with arbitrary spacing. The
comments and notes in § II explain the solutions to the numerical problems which arise in this computation. The arrays in named
common UNEVE are Extended Memory Array, which is peculiar to the Hewlett-Packard system used for the computations and

will probably be unnecessary on other machines.

APPENDIX B

FUNDAMENTALS

This appendix discusses the choice of the frequencies to be used in performing inverse Fourier transforms, necessary for
comparison with the original time series data (§ II) or for the computation of correlation functions from power spectra (§§ I and
IV). For clarity we will often compare the general case with that of even sampling. Assume that we are measuring values of X(z), a

random process which is a continuous function of time.

The starting point is the data. We have N data points, each consisting of a timet, and the value X, = X(¢,) of the variable at this

time; i.e., we have the sets
{X@¢t,),n=1,2,...,N}

The times will be assumed to be ordered:

ty <ty <ty<--<ty.

and

{twn=1,2...,N}. (B1)

(B2)

In the evenly spaced case, there is a constant interval, At =t¢,,, — t,, between the samples. In the general case, the times are
arbitrary, and the interval between adjacent points takes on many values.
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FTN4X
SEMA (UNEVE)

SUBROUTINE FT (XX, TSAMP,NN,WZ, NFREQ, SI)
Chhkhhkkkkhkkkkhhhkkkhkhhkhkkkkkkk kA kkkkk Ak k Ak kkkkkkk Kk k kk k& % % %

C* CALCULATE THE FOURIER TRANSFORM OF UNEVEN DATA *
Cx *
cx *
Cx* INPUT: -NN SAMPLE TIMES (TSAMP) AND VALUES (XX) *
C* —-VALUE OF FUNDAMENTAL FREQUENCY (WZ) *
C* -NUMBER OF FREQUENCIES FOR TRANSFORM (NFREQ) *
C* —LENGTH OF FREQUENCY ARRAY (LFREQ —in COMMON) *
C* —FIDUCIAL ORIGIN OF TIME (TZERO -in COMMON) *
Cc* —-SIGN OF TRANSFORM (SI) *
C* *
C* Note that LFREQ must be >= 2 * NFREQ *
c* *
c* *
C* OUTPUT: -REAL AND IMAGINARY PARTS OF DFT (FTRX,FTIX) *
c* *
C* The transform is embedded in a zero-filled array *
C* of length LFREQ, with appropriate symmetries for *
Cc* real data. *
Ck—m *
C* JEFFREY D. SCARGLE *
Cx* MAIL STOP 245-3 *
Cx* NASA-AMES RESEARCH CENTER *
C* MOFFETT FIELD, CA 94035 *
c* *
Cc* HEWLETT-PACKARD FORTRAN (FTN4X COMPILER) *
CHRA KA AR KR A KKK IR KKK AR KRRk k ok kkkkk ok kAR kkk Ak Kk ARk kkkkk Kk k& %

COMMON/ UNEVE / FTRX(1024), FTIX(1024), LFREQ, TZERO

DIMENSION XX (NN) , TSAMP (NN)
COMPLEX WORK
TOL1 = 1.0 E -04

TOL2 = 1.0 E -08

WUSE = WZ

FNN = FLOAT( NN )

CONST1 = 1.0 / SQRT(2.0)
CONST2 = SI * CONST1
SUMT = 0.0

SUMX = 0.0

DO 100 I=1,NN

SUMT = SUMT + TSAMP( I )
SUMX = SUMX + XX( I )
100 CONTINUE

ISTOP = NFREQ

Chhkkhkhkkkhkkhkkhkkkkkhkhkhkkkhkhhhkhkhkhkkkkkk

C* INITIALIZE FOR ZERO FREQUENCY *
ChrkhkhkhkkhhhkhhkhXhkkhkkh kA kkkkkkkkk k%

TAUQ = SUMT / FNN ! LIMIT OF TAU AS W——>0
CSUM = FNN
SSUM = 0.0

FTRX (1) = SUMX / SQRT( FNN )
FTIX (1) = 0.0

WDEL = WUSE
WRUN = WUSE
ITI = 2

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1989ApJ...343..874S&db_key=AST

J. 11343 87450

A0

rI_

No. 2, 1989 FOURIER TRANSFORMS AND CORRELATION FUNCTIONS

Chhdkkhkhkkkhkhkhkkkkhkkhkkkhkkhhkkkhkkkkkkkkkkkkkkk*k

Cc* START FREQUENCY LOOP *
Chhkkhkhhkhkkkkk Ak kK kkkkkk kX kk Kk kA hk Ak kkkk k&

150 CONTINUE

Chhkkkkkkkkkkkkkkkkk

C* CALCUATE TAU *
Chhkkkhkkhkkhhkkkkkk

CSUM = 0.0

SSUM = 0.0

SUMIC = 0.0

SUMTS = 0.0

DO 190 I = 1,NN
TTT = TSAMP( I )

ARGl = 2.0 * WRUN * TTT
ARG = FOLD( ARGl )

TCOS = COS ( ARG )
TSIN = SIN ( ARG )
CSUM = CSUM + TCOS
SSUM = SSUM + TSIN

SUMTC = SUMTC + TTT * TCOS
SUMTS = SUMTS + TTT * TSIN
190 CONTINUE

WATAN = ATAN2( SSUM , CSUM )
IF (ABS (SSUM) .GT.TOL1 .OR. ABS(CSUM).GT.TOLl) GOTO 200
WATAN = ATAN2( —-SUMTC , SUMTS )

200 CONTINUE

WTAU = 0.5 * WATAN

WINEW = WTAU
SUMR = 0.0

SUMI = 0.0

SC0s2 = 0.0

SSIN2 = 0.0

CROSS = 0.

Chhkhkhkkkkhkhhkhkkkhkkkhkkhkhkkkkhkkkkkkkkkk

Cx SUMMATIONS OVER THE SAMPLES *
ChX ARk Ak h Xk Kk KAk Kk kAR kXX R Kk K kK kK

DO 440 I = 1,NN

TIM = TSAMP (I)
ARGl = WRUN * TIM - WTNEW
ARG = FOLD( ARGl )

TCOS = COS (ARG)
TSIN = SIN(ARG)
CROSS = CROSS + TIM * TCOS * TSIN
SCOS2 = SCO0S2 + TCOS * TCOS
SSIN2 = SSIN2 + TSIN * TSIN
XD = XX(I)
SUMR = SUMR + XD * TCOS
SUMI = SUMI + XD * TSIN
440 CONTINUE

FTRD = CONST1 * SUMR / SQRT (SCOS2)
IF ( SSIN2 .LE. TOLl1 ) GOTO 450
FTID = CONST2 * SUMI / SQRT (SSIN2)
GOTO 460
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460
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CONTINUE ! USE L'HOPITAL'S RULE
FTID = CONST2 * SUMX / SQRT( FNN )
IF ( ABS(CROSS) .GT. TOL2 ) FTID = 0.0

CONTINUE

PHASE1l = WINEW - WRUN * TZERO

PHASE = FOLD( PHASE1l )

WORK = CMPLX( FTRD, FTID )*CEXP( CMPLX (0.0, PHASE ) )
FTRX(II) = REAL( WORK )

FTIX(II) = AIMAG( WORK )

II =1II +1

WRUN = WRUN + WDEL

IF( II .LE. ISTOP )GOTO 150

Chhkhkkkkkkhkhkhkhkhkhkhkhhhhhkhkkkhhhkkkkhkkkhkhkhx

C* ZERO-FILL TRANSFORM (OVERSAMPLE INVERSE) *

C* IMPOSE SYMMETRY FOR REAL DATA *
CHRAIKKIKKKKK KKK KRR KK KKK KA A KKKk AR KKk kKKK hk kXX

320

340
465

999

IF( 2 * NFREQ .GT. LFREQ ) GOTO 999
I1 = NFREQ + 1 ! THIS GIVES GOOD RESULTS ON EVEN DATA

DO 320 I= I1,LFREQ
FTRX(I) = 0.0
FTIX(I) = 0.0
CONTINUE

NSTOP = LFREQ / 2

DO 340 I=2, NSTOP
IPUT = LFREQ -I + 2
FTRX (IPUT) FTRX(I)
FTIX (IPUT) -FTIX(I)
CONTINUE

CONTINUE

RETURN
CONTINUE
END

FUNCTION FOLD( ARG )

Chhkkkkhkkkkkkkkkkhkkkkkhkkkkkkkkkkkhhkkkkkhkkkkkkkkkkkk

C*
C*
C*
C*

This function folds trigonometric arguments *

to account for the limited range for *
the trigonometric functions, so the value *
of ARGMAX will depend on the system. *

Chhkkkkkkkhkhhhkkhkhhhhhkhhhhkhkkhkhkhhkkkhkkkkhkkkkkk

10

20

30

PI = 3.1415926535898

ARGMAX = 8000.0 * PI

FOLD = ARG

CONTINUE

IF( FOLD .LE. ARGMAX) GOTO 20
FOLD = FOLD - ARGMAX
GOTO 10

CONTINUE

IF( FOLD .GT. -ARGMAX) GOTO 30
FOLD = FOLD + ARGMAX
GOTO 20

CONTINUE

RETURN

END

Vol. 343
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We call the interval (¢, ty) the sampling interval and define the sampling range as
Tr=ty—t; =(N — DAt, (B3)

not to be confused with the period to be introduced shortly. (Note that At is defined for the even sampling case only.) The goal is to
compute X’s frequency space representation and test it by inverse transforming back to the time domain. This is accomplished by
computing the DFT at a set of evenly spaced frequencies and performing the inversion in the standard way:

X(t) =Y exp (iwt)FTx(0) , (B4)

where the sum is over evenly spaced frequencies. Note that the time offset 7(w) is not used in this expression. Once the Fourier
transform has been evaluated we can forget about the fact that the data are unevenly sampled, and the inversion back to the time
domain can be carried out just as it would be for evenly spaced data.

When this inversion is carried out, it turns out that the function thus represented is not really X(t), but a function periodically
replicated outside of the sampling interval. We find, in fact, that for the evenly spaced case

X(tys) = X)), (BS)
for any integer j. Thus the period of the replicated function is not the sampling range, but the slightly larger value
Tp=ty+, —t; = NAt, (B6)
larger than the range by one of the intervals At. We have the following relation giving the period in terms of the range:
Tp = Ty N/(N —1). (B7)

Since N and Ty are well defined for arbitrary sampling, even though At is not, we use equation (B7) to define the period T, and the
corresponding fundamental frequency
wo =27/Tp . (B8)

However, for the computation of correlation functions it turns out to be better to use a fundamental frequency calculated as though the
sampling interval were larger than it actually is by a factor of 2:

wo = 21/2Tp) = /Tp . (B9)

For this choice nicely eliminates an undesirable time-domain effect called “ wraparound.” The use of equation (B9) is analogous to
the standard procedure to avoid wraparound, namely, zero-filling the data array to twice its original length.

Wraparound results from the periodic replication inherent in any finite DFT. What is undesirable in a correlation function is the
spillover of the right-hand end of the data into the left-hand end. The effect is eliminated because zero-extension assures that any
such spilled data is multiplied by zero, thus producing no effect. (See Paper I, Fig. 15, for a graphic description of wraparound.) Any
larger value of w, allows overlap for some value of the lag, while use of a smaller w, only increases the computation time without
changing the result. A second and apparently independent reason for using equation (B9) is that, at least for even sampling, this
choice approximately minimizes the mean-square error of the ACF estimate (Kay 1981).

All inverse Fourier transforms in this paper were done using a standard Fast Fourier Transform (FFT) algorithm using evenly
spaced frequencies based on the value of the fundamental in equation (B9). There is one characteristic of these frequencies that holds
for evenly spaced data, but is lost for uneven spacing—the statistical independence of the Fourier Transform at these frequencies.
This results from the fact that the frequency functions that are being used to expand in are not orthogonal with respect to the
operation of summing over the sample times. The small correlations that exist may be important in some applications, and should
be kept in mind, especially in statistical analyses.

The maximum frequency in the sum in equation (B4), @,,,,, is less well defined than is the fundamental. For even spacing it is the
Nyquist frequency, 2n/At. But with uneven sampling there is no single value of Az. In practice a good choice for w,,, is often 2n
divided by some average or effective value of the actual sampling intervals At; = t; — t;_; (assuming the t; are ordered). But in fact
the value of w,,,, should be regarded as a more or less free smoothing parameter. The examples in the text show that the standard
case, defined to be the choice of w,,,, such that the number of frequencies is equal to the number of data points—as in the evenly
spaced case—corresponds to no smoothing, but not quite exact replication of the original data. The choice to use in practice
depends on the sampling at hand, the amount of noise in the data, and what the Fourier transform will be used for.

A note about the number of frequencies: In the standard case the number of frequencies is actually twice the number of data
points, because of our choice of a fundamental that is half as large (eq. [B9]) as the conventional choice. However, the maximum
frequency used—which is what is relevant to how smoothed the reconstructed data are—is the same as it would be, say, in the case
of evenly spaced data transformed in the conventional way.

The determination of the fundamental frequency to use in the inversion of the cross-spectrum (to yield the cross-correlation
function) is a bit more complex. We need to define a kind of joint fundamental frequency for two data sets. Equation (B9) still
applies, but what value is one to use for T; if the sampling intervals for X and Y are not the same? The following procedure has
worked well in several cases: compute the range 7§ to be the length of the smallest interval that includes all the samples of both X
and Y,ie,

tmin = min [£{7, ¢'] (B10)
fmax = Max [1%, t] (B11)
TR = (tmax - tmin) (B12)
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so that
Tp = Ta N/(N — 1) = (tmax — tmi)N/(N — 1), (B13)

where N = (Ny + Ny)/2, the average number of points in the samples.

APPENDIX C
EFFECT OF A CONSTANT COMPONENT

A common first step in spectral or correlation analysis is to subtract the mean of the data (i.e., the sample mean) from the time
series. Part of the rationale for doing this is a fear that if the mean is left in the resulting zero-frequency spike in the power spectrum
will leak to other frequencies, or that the ACF will not behave properly for large ¢.

A simple example shows that removing the sample mean can give misleading results. Consider the Wold Representation:

X(t)=C@t)  R(t) + D, €y

where C(t) is a pulse shape, the process R(f) represents the amplitudes of randomly occurring pulses, and the asterisk is the
convolution operator. The process D contains all of the determinism of X. The process R contains all of the randomness of X ; it is
always at least white, but in physical applications it is often even more random—namely independently distributed. (Paper I, § Ilc, is
a discussion of this surprisingly general model.) For simplicity we take D to be constant, making X essentially a moving average
process (i.e., filtered white noise, closely related to “shot noise »).

We seek the auto-correlation function of the pulse shape C(t). From equation (C1) the ACF of X is

px(t) = CR?)S(r) + 2D(R) Y. C(1)dt + D? , (o))
where S(t) is the autoconvolution of C(t):
Sdr) =Y. Ct)C(t — t)dr' . (€3

This expression can be interpreted as the correlation of C(f) with its time reverse, C(—t), and is the same as the ACF of the pulse
shape if the pulse is time-symmetric.

If (R> = 0 or the pulse shape has zero area (either of which means that the pulsed component of X, namely, C * R, has zero mean
value) the above expression simplifies to:

px(t) ~ pulse shape autoconvolution + constant . (C4)

In this case, we could subtract the mean of the data; this would have the effect of forcing D = 0, and the constant in equation (C4)
would accordingly be zero.

However, this analysis does not work if (C * R) # 0, as is often the case in astronomy. For example, if C(t) represents a pulse of
light and R(z) is the amplitude of the pulse at time ¢, then C and R are both positive definite. In such cases one can calculate the
autocorrelation function of X — K, where K is an arbitrary constant, and search for that value of K which produces the expected
asymptotic behavior of the ACF. In most cases one expects the ACF to decline smoothly to zero for large lags, assuming the samples
span a time interval substantially greater than the widths of the pulse.

In effect we are finding the representation (C1) that corresponds to D = 0. We could do this directly if there were little or no
overlap between the pulses, for then D would be the minimum value of the observed time series.

It may be noted that similar considerations hold for power spectrum analysis. A random process such as in equation (C1) has a
continuous power spectrum, which may well be nonzero at zero frequency. Hence it would be a mistake to subtract out the mean
value, forcing the zero-frequency power P,(0) to be zero. More appropriate in this case would be to adjust the subtracted constant
so that Py(0) is equal to the limit of Py(w) as & — 0.

APPENDIX D
WEIGHTED DATA
The effect of unequally weighted data points can be found by considering what happens if there are two points that coincide, and

realizing that this is the same as a single point of double weight. If w; is the weight of point i, with the normalization Y w; = N (unit
weight per point on average), we find

FTy(w) = F, ), (4w, X, cos wt, + iBw, X, sin ot) (D1)
Alw) = (3, w, cos® wt;) "2 5 Bw) = (3. w, sin? wt) 12 (D2)
(@) = (1/2w) tan~* (3 w, sin 20t,/Y w, cos 2wt,) . (D3)
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